TP-NOTE(1) Version 1.25.17 | Tp-Note
documentation

Unix manpage
Jens Getreu

2025-12-04

1 NAME

Tp-Note: Markup-enhanced granular note-taking

Save and edit your clipboard content as a note file.

2 SYNOPSIS

tpnote [-a] [-b] [-c <FILE>] [-C <FILE>] [-d <LEVEL>] [-e]
[-1 <LANG>] [-p <NUM>] [-n] [-t] [-u] [-v] [-V]
[-x <DIR>|"'"|'-"]

[<DIR>|<FILE>]

3 DESCRIPTION

Tp-Note is a note-taking tool and a template system that synchron-
izes the note’s metadata with its filename. Tp-Note analyzes its
environment and the clipboard content and stores the result in
variables. New notes are created by filling these variables in
predefined and customizable Tera-templates. In case the first posi-
tional parameter ‘<FILE>’ points to an existing Tp-Note file, the
note’s metadata is parsed and, if necessary, its filename is adjus-
ted. For all other file types, Tp-Note creates a new note in the
same directory annotating the file. If the positional parameter
‘<DIR>’ points to an existing directory (or, when omitted, the cur-
rent working directory), a new note is created in that directory.
After creation, Tp-Note launches the system'’s file editor. Although
the configurable default templates are written for Markdown, Tp-
Note is not tied to any specific markup language. However, Tp-
Note comes with an optional viewer feature that currently renders
only Markdown, ReStructuredText, and HTML input. In addition,
there is some limited support for Asciidoc and WikiText. Finally,
the note’s rendition is live updated and displayed in the user’s
web browser.

1/60

After the user finishes editing, Tp-Note analyzes potential changes
in the note’s metadata and renames, if necessary, the file so that
its metadata and filename are in sync again. Finally, the resulting
path is printed to ‘stdout’, log and error messages are dumped to
‘stderr’.

This document is Tp-Note’s technical reference. More information

can be found in Tp-Note’s user manual and at Tp-Note’s project
bage.

4 CREATING NOTE FILES

Tp-Note operates in 5 different modes, depending on its command
line arguments and the clipboard state. Each mode is associated
with one content template and one filename template.

4.1 Create a new note with empty clipboard

In case the clipboard is empty while starting, the new note is
created with the templates: “tmpl.from dir content’ and

‘“tmpl.from dir filename’. By default, the new note’s title is the par-
ent’s directory name. The newly created file is then opened with
an external text editor, allowing it to change the proposed title
and add other content. When the text editor closes, Tp-Note syn-
chronizes the note’s metadata and its filename. This operation is
performed with the ‘“tmpl.sync filename’ template.

Use case: the clipboard is empty and ‘<path>’ is a directory (or
empty):

tpnote "./03-Favorite Readings/"
or

cd "./03-Favorite Readings"
tpnote

creates the document:
./03-Favorite Readings/20211031-Favorite Readings--Note.md

with the content:

title: Favorite Readings

subtitle: Note
author: Getreu
date: 2021-10-31

lang: en-GB

2/60

https://blog.getreu.net/projects/tp-note/tpnote--manual.html
https://blog.getreu.net/projects/tp-note/
https://blog.getreu.net/projects/tp-note/

4.2 Create a new note based on clipboard data

When ‘<path>’ is a directory and the clipboard is not empty, the
clipboard’s content is stored in the variables

‘{{ txt clipboard.body }}’ and ‘{{ html clipboard.body }}’. The lat-
ter contains the HTML rich text version of the clipboard content.
In addition, if the content contains a hyperlink, the first
hyperlink’s name can be accessed with ‘{{ txt clipboard.body |
link text }}’, its URL with ‘{{ txt clipboard.body | link dest }}’
and its title with ‘{{ txt clipboard.body | link title }}’. The new
note is then created with the “tmpl.from dir content’ and the
‘“tmpl.from dir filename’ templates. Finally, the newly created note
file is opened again with some external text editor. When the user
closes the text editor, Tp-Note synchronizes the note’s metadata
and its filename with the template “tmpl.sync_filename’.

Note: this operation mode also empties the clipboard
(configurable feature).

HTML to Markdown conversion
In case the clipboard stream contains HTML, the internal filter

{{ html clipboard.body
| html to markup(extension=extension default,
default=txt clipboard.body) }}

converts the stream into Markdown before being processed. If the
conversion fails or results in an empty string, the fallback value is
‘{{ txt _clipboard.body }}’

Clipboard simulation

When no mouse and clipboard is available, the clipboard feature
can be simulated by feeding the clipboard data into stdin.

echo "[The Rust Book] (<https://doc.rust-lang.org/book/>)" | tpnote

Tp-Note behaves here as if the clipboard contained the string:
“[The Rust Book](<https://doc.rust-lang.org/book/>)".

When you pipe HTML into Tp-Note, make sure that the stream
starts with either ‘<!DOCTYPE html’ or ‘<html’, e.g.:

echo '<!IDOCTYPE html><hl>Hello World</h1l>'| tpnote

4.2.1 The clipboard contains some text

Use case: While launching Tp-Note the clipboard contains the
string: “Who Moved My Cheese?\n\nChapter 2” and ‘<path>’ is a direct-

ory.

tpnote "./03-Favorite Readings/"

3/60

Or:

cd "./03-Favorite Readings/"
tpnote

This creates the document:
./03-Favorite Readings/20211031-Who Moved My Cheese--Note.md

with the content:

title: Who Moved My Cheese

subtitle: Note
author: Getreu
date: 2021-10-31

lang: en-GB

Who Moved My Cheese?

Chapter 2

We see from the above example how the ‘“tmpl.from dir content’
content template extracts the first line of the clipboard’s content
and inserts it into the header’s ‘title:’ field. Then, it copies the
entire clipboard content into the body of the document. However,
if desired or necessary, it is possible to modify all templates in Tp-
Note’s configuration file. Note that not only the note’s content is
created with a template, but also its filename: The

‘“tmpl.from dir filename’ filename template concatenates the cur-
rent date, the note’s title and subtitle.

4.2.2 The clipboard contains a heading

Use case: Open a web page in your web browser and select some
text with its heading. Then copy the content into your (HTML)
clipboard:

<h1l>Cinderella</hl>
by the Brothers Grimm

Launch Tp-Note:

mkdir 'Fairy tales'
tpnote './Fairy tales'

Tp-Note’s templates ‘tmpl.from dir content’ and
‘“tmpl.from dir filename’ create the following document:

./Fairy tales/20250104-Cinderella--Notes.md

4/60

title: Cinderella

subtitle: Note
author: Getreu
date: 2025-01-04

lang: de-DE

Cinderella

by the Brothers Grimm

Tp-Note searches for the first heading tag ‘<h1>’, ‘<h2>’, ‘<h3>’ etc.
in the HTML clipboard and uses the finding as the title for the
new Tp-Note document.

NB: You can achieve the same result by piping the clipboard
content into Tp-Note:

mkdir 'Fairy tales'

echo '<!DOCTYPE html><hl>Cinderella</hl>by the Brothers Grimm'\
| tpnote './Fairy tales'

4.2.3 The clipboard contains a hyperlink

Use case: ‘<path>’ is a directory, the clipboard is not empty and
contains the string: ‘I recommend:\n[The Rust Book] (https://
doc.rust-lang.org/book/)’.

tpnote './doc/Lecture 1'

Tp-Note’s templates “tmpl.from dir content’ and
‘“tmpl.from dir filename’ create the following document:

./doc/Lecture 1/20211031-The Rust Book--Notes.md

title: The Rust Book

subtitle: URL
author: Getreu
date: 2021-10-31

lang: en-GB

I recommend:
[The Rust Book](<https://doc.rust-lang.org/book/>)

When analyzing the clipboard’s content, Tp-Note searches for hy-
perlinks in Markdown, ReStructuredText, Asciidoc and HTML
format. When successful, the content template uses the link text
of the first hyperlink found as the document title.

5/60

4.2.4 The clipboard contains a YAML header

Use case: ‘<path>’ is a directory, the clipboard is not empty and
contains the string: ‘---\ntitle: Todo\nfile ext: mdtxt\n---
\nnothing’.

tpnote
This creates the note: 20230915-Todo.mdtxt” with the following con-

tent:

title: Todo

subtitle: Note
author: Getreu
date: 2023-09-15
lang: fr-FR

file ext: mdtxt

nothing

Technically, the creation of the new note is performed using the
YAML header variables: ‘{{ fm.fm_title }}’, ‘{{ fm.fm subtitle }}’,
‘“I{ fm.fm author }}’, {{ fm.fm date }}’, {{ fm.fm lang }}’,

‘{{ fm.fm_sort tag }} and ‘{{ fm.fm file ext }}” which are evalu-
ated with the ‘“tmpl.from dir filename’ templates.

Note that the same result can also be achieved without clipboard
input by typing in a terminal:

echo -e "---\ntitle: Todo\nfile ext: mdtxt\n---\n\nnothing" |
tpnote

Furthermore, this operation mode is very handy with pipes in gen-
eral, as shown by the following example: it downloads some
webpage, converts it to Markdown and copies the result into a Tp-
Note file. The procedure preserves the webpage’s title in the
note’s title:

curl 'https://blog.getreu.net' \
| pandoc --standalone -f html -t

markdown strict+yaml metadata block \
| tpnote

creates the note file '20230919-Jens Getreu's blog--Note.md” with
the webpage’s content converted to Markdown:

title: Jens Getreu's blog

subtitle: Note
author: Getreu

6/60

date: 2023-09-15
lang: en

viewport: width=device-width, initial-scale=1.0, maximum-scale=1

Jens Getreu's blog

- [Home] (https://blog.getreu.net)
- [Categories] (https://blog.getreu.net/categories)

4.3 Create a new note annotating some non Tp-Note
file

When ‘<path>’ points to an existing file whose file extension is
other than ‘.md’, a new note is created with a similar filename and
a reference to the original file is copied into the new note’s body.
If the clipboard contains some text, it is appended there also. The
logic of this is implemented in the templates:

‘tmpl.annotate file content’ and ‘tmpl.annotate file filename’.
Once the file is created, it is opened with an external text editor.
After editing the file, it will be - if necessary - renamed to be in
sync with the note’s metadata.

For example:

:> "Classic Shell Scripting.pdf"
tpnote "Classic Shell Scripting.pdf"
creates the note:

Classic Shell Scripting.pdf--Note.md"

with the content:

title: Classic Shell Scripting.pdf
subtitle: Note

author: Getreu

date: 2023-09-15

lang: en-US

[Classic Shell Scripting.pdf](<Classic Shell Scripting.pdf>)

The configuration file variable ‘filename.extensions’ lists all the file
extensions that Tp-Note recognizes as its own file types. Only
foreign file types can be annotated.

7/60

Note that the file annotation mode also reads the clipboard’s con-
tent: when it is not empty, its data is appended to the new note’s
body.

4.4 Convert a text file into a Tp-Note file

Consider the content of the following text file ‘Ascii-Hangman--A
game for children.md’ whose creation date is 13 March 2022:

A little game designed for primary kids to revise vocabulary in
classroom.

To convert the text file into a Tp-Note file type:

tpnote --add-header --batch "Ascii-Hangman--A game for
children.md"

NB: the ‘- -add-header’ flag might not be necessary, as it is enabled
by default through the configuration file variable
‘arg default.add header = true’.

As a result of the above command, Tp-Note converts the filename
into:

20220313-Ascii-Hangman--A game for children.md

and prepends a YAML header to the file’s content:

title: Ascii-Hangman

subtitle: A game for children
author: Getreu

date: 2022-03-13

lang: en-US

orig name: Ascii-Hangman--A game for children.md

A little game designed for primary kids to revise vocabulary in
classroom.

4.5 Use Tp-Note in shell scripts

* Use case: download a webpage and store it as Tp-Note
file

Using the method displayed above you can save time and
create a script with:

sudo nano /usr/local/bin/download

Insert the following content:

8/60

curl "$1" | tpnote

Instead of Tp-Note’s internal HTML to Markdown converter,
you can alternatively use the external ‘pandoc’ converter. This
method offers the advantage to also convert the HTML page’s
metadata. Currently, Tp-Note’s internal converter lacks this
feature.

curl "$1" | pandoc --standalone -f html -t
markdown strict+yaml metadata block | tpnote
Do not forget to make it runnable:
sudo chmod a+x /usr/local/bin/download
To execute the script type:

download 'https://blog.getreu.net’

5 NOTE FILE MANIPULATION

5.1 Editing notes

Unless invoked with ‘--batch’ or “--view’, Tp-Note launches an ex-
ternal text editor after creating a new note. This also happens
when ‘<path>" points to an existing ‘.md’-file.

For example: open and edit an existing note file:

cd "./03-Favorite Readings"
tpnote 20211031-Favorite Readings--Note.md

5.2 Viewing notes

Once Tp-Note has launched the user’s file editor, it opens the note
file, renders its content to HTML, launches the user’s web
browser and connects it to Tp-Note’s internal web server. Then,
Tp-Note watches the note file and re-renders the viewed HTML
when the content changes. The note’s file extension determines
which internal renderer is activated.

Tp-Note’s note built-in viewer comprises three markup language
renders:

1. ‘Markdown’ (file extension .md)
This renderer is CommonMark compatible and feature com-
plete. It understands, heading attributes, inline images, tables,
task lists, footnotes, strike-through and LaTeX formula:

9/60

" "math
X™n + y*™n = z™n

Or:
$$

X™n + y™n = z™n

$$

Inline formulas are enclosed between Dollar characters, e.g. ‘$
\alpha$’ becomes ‘a’.

Source code is highlighted when you annotate the
programming language (see also

“tmpl_html.viewer highlighting theme’ and
“tmpl_html.exporter highlighting theme’):

pub fn main(){

let w = "world!";

println! ("Hallo {:?}", w);
}

Heading attributes:
text { #id .classl .class2 myattr other attr=myvalue }

is interpreted as a level 1 heading with the content text, ID

‘id’, classes ‘classl’ and ‘class2’ and custom attributes ‘myattr’
(without value) and ‘other attr’ with value ‘myvalue’. Note that
ID, classes, and custom attributes should be space-separated.

2. ‘ReStructuredText’ (file extension .rst)
This renderer is experimental and covers only basic markup.

3. ‘PlainText’ (link only renderer, file extension .txtnote)
The purpose of this renderer is to make hyperlinks written in
Markdown, ReStructuredText, Asciidoc, HTML, Wikitext syn-
tax clickable. Only hyperlinks are rendered, all other text is
shown verbatim.

Tp-Note’s web server streams large media files without loading
them into memory. Just refer to the media file as local link: ‘[my
video] (<dir/my video.mp4>)’. Make sure that the file extension of
the video file is registered with ‘viewer.served mime types’.

10/60

5.3 Automatic filename synchronization before and
after editing

Before launching the text editor and after closing it, Tp-Note syn-
chronizes the filename with the note’s metadata. When the user
changes the metadata of a note, Tp-Note will replicate that
change in the note’s filename. As a result, all your note’s file-
names always correspond to their metadata, which helps to re-
trieve your notes in large data pools.

For example:
tpnote "20200306-Favorite Readings--Note.md"

The way how Tp-Note synchronizes the note’s metadata and
filename is defined in the template ‘“tmpl.sync filename’.

Once Tp-Note opens the file in your text editor, let’s assume you
decide to change the title in the note’s YAML metadata section
from ‘title: Favorite Readings’ to ‘title: Introduction to
bookkeeping’. After closing the text editor, Tp-Note updates the
filename automatically:

20200306-Introduction to bookkeeping--Note.md

Note: the sort tag 20200306’ has not changed. The filename syn-
chronization mechanism by default never does. (See below for
more details about filename synchronization).

5.4 Printing note files

Tp-Note renders note files to HTML. The latter is either shown in
the browser or can be exported with ‘- -export’. When exporting to
HTML, hyperlinks are passed through an internal link rewriting
engine that can be parametrized with ‘- -export-link-rewriting’.
The easiest way to print the resulting HTML, is to pipe it through
an HTML to PDF converter, e.g. Weasyprint or Wkhtmktopdf.

tpnote --export=- mynote.md | weasyprint - mynote.md.pdf

Weasyprint supports the CSS Paged Media standard allowing to
include page layout directives into HTML. You can change the de-

fault page layout by modifying the HTML template with the
“tmpl_html.exporter doc css’ configuration file variable.

5.5 Use Tp-Note in shell scripts

* Use case: synchronize recursively filenames and
metadata

The following synchronizes bidirectionally all filenames with
the note’s YAML header data.

11/60

https://www.w3.org/TR/css-page-3/

TPNOTE _USER="John" find . -type f -name '*.md' -exec tpnote -a
-b {} > /dev/null \;

The direction of the synchronization depends on whether the
‘.md’ file has a valid YAML header or not:

o A YAML header is present and valid: the header fields
might update the filename (see template
‘“tmpl.sync_filename’). A possible sort-tag at the beginning of
the filename remains untouched.

o No YAML header: a new header is prepended (see template
‘from_text file content’) and the filename might change
slightly (see template ‘from text file filename’). A possible
sort-tag at the beginning of the filename remains un-
touched. If the filename does not start with a sort tag, the
file’s creation date is prepended.

6 OPTIONS

-a, --add-header

Prepends a YAML header in case the text file does not have
one. The default template, deduces the ‘title:’ and
‘subtitle:’ header field from the filename. It’s sort-tag and
file extension remain untouched. In case the filename is
lacking a sort-tag, the file creation date in numerical format
is prepended. As this option is activated by default, it has no
effect unless you set ‘arg default.add header = false’ in the
configuration file.

-b, --batch

Do not launch the external text editor or viewer. All other op-
erations are available and are executed in the same way. In
batch mode, error messages are dumped on the console only
and no alert windows pop up.

Tp-Note ignores the clipboard when run in batch mode with
‘--batch’. Instead, if available, it reads the stdin stream as if
the data came from the clipboard.

-c FILE, --config=FILE

Loads an additional configuration from the TOML formatted
FILE and merges it into the default configuration.

-C FILE, --config-defaults=FILE

Dumps the internal default configuration in TOML format
into FILE or stdout if FILE equals to ‘-’, e.g. ‘“tpnote -C - |
less’.

12/60

-d LEVEL, --debug=LEVEL

Prints additional log messages. The debug level LEVEL must
be one out of ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’ (default) or
‘off’. The level ‘trace’ reports the most detailed information,
while ‘error’ informs you only about failures. A ‘warn’ level
message means that not all functionality might be available
or work as expected.

Use “-b -d trace’ for debugging templates and -V -b -d
trace’ for debugging configuration files. If the HTTP server
(viewer) does not work as expected: ‘-n -d debug’. If your
text editor does not open as expected: ‘-n -d info --edit’.
Or, to observe the launch of the web browser: ‘-n -d info --
view’. The option ‘-d trace’ shows all available template vari-
ables, the templates used and the rendered result of the sub-
stitution. This is particularly useful for debugging new
templates. The option ‘-d off’ silences all error message re-
porting and also suppresses the error pop-up windows.

Note, under Linux, when -d trace is given, no pop-up mes-
sages appear. Instead, the logs are dumped to the console
from where you started Tp-Note.

All error messages are dumped in the error stream stderr
and appear on the console from where Tp-Note was
launched:

tpnote.exe --debug info my note.md

Under Windows the output must be redirected into a file to
see it:

tpnote.exe --debug info my note.md >debug.md 2>&1

Alternatively, you can redirect all log file entries into popup
alert windows.

tpnote.exe --popup --debug info my note.md

The same can be achieved by setting following configuration
file variables (especially useful with Windows):

[arg default]
debug = 'info'
popup = true

The value for ‘arg default.debug’ must be one out of ‘trace’,
‘debug’, ‘info’, ‘warn’, ‘error’ (default) and ‘off’. They have the
same meaning as the corresponding command line options.

-e, --edit

13/60

Edit only mode: opens the external text editor, but not the
file viewer. This disables Tp-Note’s internal file watcher and
web server, unless ‘-v’ is given. Alternatively you can set the
environment variable ‘TPNOTE BROWSER=""’" to the empty string.
Another way to permanently disable the web server is to set
the configuration variable ‘arg default.edit=true’. When *--
edit --view’ appear together, both the editor and the viewer
will open and the arg default.edit variable is ignored.

-1 LANGUAGE TAG, --force-lang=LANGUAGE TAG

Disables the automatic language detection while creating a
new note file and use LANGUAGE TAG instead. LAN-
GUAGE TAG is formatted as IETF BCP 47 language tag,

e.g. ‘en-US’. If LANGUAGE TAG equals ‘-’, the environment
variable ‘TPNOTE_LANG’ determines the language instead; or, if
the latter is not defined, the user’s default language, as re-
ported from the operating system’s locale setting, is decis-
ive.

-p PORT, --port=PORT

Sets the server port that the web browser connects to, to the
specified value PORT. If not given, a random available port is
chosen automatically.

-n, --no-filename-sync

Whenever Tp-Note opens a note file, it synchronizes its
YAML-metadata with its filename. “--no-filename-sync’ dis-
ables this synchronization. In addition, in scripts this flag
can be especially useful for validating the syntax of ‘. md’-
files. See section EXIT STATUS for more details. The section
METADATA FILENAME SYNCHRONIZATION shows altern-
ative ways to disable synchronization.

-s SCHEME NAME, --scheme=SCHEME NAME

Sets the filename scheme for creating a new note file. This
overwrites the ‘arg default.scheme’ value in the configuration
file. Under ‘[[scheme]]’ follows the definition of the schemes.
The default configuration ships two schemes with the
SCHEME NAMES ‘default’ and ‘zettel’ (for Zettelkasten).

-t, --tty

Tp-Note tries different heuristics to detect whether a graph-
ic environment is available or not. For example, under Linux,
the ‘DISPLAY’ environment variable is evaluated. The ‘- -tty’
flag disables the automatic detection and sets Tp-Note into
“console only” mode: now only the non GUI editor (see
configuration variable: ‘app_args.editor console’) and no
viewer is launched.

14/60

-u, --popup

Redirects log file entries into pop-up alert windows. Must be
used together with the --debug option to have an effect.
Note, that debug level ‘error’ conditions will always trigger
pop-up messages, regardless of --popup and --debug (un-
less “--debug off’). Pop-up alert windows are queued and will
never interrupt Tp-Note. To better associate a particular ac-
tion with its log events, read through all upcoming pop-up
alert windows until they fail to appear. As this option is activ-
ated by default, it has no effect unless you set
‘arg_default.popup = false’ in the configuration file.

-V, --view

View only mode: do not open the external text editor. This
flag instructs Tp-Note to start an internal file watcher and
web server and connect the system’s default web browser to
view the note file and to observe live file modifications. The
configuration setting ‘arg default.edit=true’ or the environ-
ment variable ‘TPNOTE_EDITOR=""’ disables the viewer.
However, with ‘--view’ given at the command line, the viewer
appears, regardless of the value of ‘arg_default.edit’.

NB: By default, Tp-Note tries to synchronize every file it
opens. To prevent the viewed filename from changing, ‘- -
view’ can be used together with ‘--no-filename-sync’.

-V, --version

Print Tp-Note’s version, its built-in features and the path to
the sourced configuration file. The output is YAML formatted
for further automatic processing. In addition, use -V -b -d
trace’ for configuration file debugging.

-x DIRECTORY, --export=DIRECTORY

Prints the note as HTML rendition into DIRECTORY. ‘-x -’
prints to stdout. If DIRECTORY is a relative path, DIRECT-
ORY is appended to the document directory. For example,
e.g. ‘--export=." or ‘-x ./’, prints the HTML rendition in the
directory where the note file resides. This option prevents
the launch of the external text editor and viewer and can be
combined with ‘- -batch’ to avoid pop-up error alert windows.

--export-link-rewriting=MODE

Chooses how local links in the exported HTML file are
written out: ‘off’, ‘short’ or ‘long’ (default). No link rewriting
occurs, for the MODE ‘off’. The MODE ‘short’ rewrites all
local relative links to absolute links, whose base is the first
parent directory containing the marker file “tpnote.toml’. NB,
the directory of the marker file defines the base for all abso-

15/60

lute local links in your Tp-Note file! The mode ‘long’ rewrites
all local links to absolute links whose base is the system’s
root directory ‘/’. For relative local links this is performed by
prepending the path to the note file. Absolute local links get
the path to the marker file ‘tpnote.toml’ prepended. In case
you do not place a ‘tpnote.toml’ file in a parent directory, the
base for absolute local links in your note file is interpreted
as ‘/’.

The right MODE choice depends on how you view the result-
ing HTML.: if you publish on a web server, then ‘short’ might
be a good choice. Do not forget to place a marker file
‘tpnote.toml” somewhere in the document’s path. If you view
the HTML file directly in your web browser, better choose
“long’. In this case, the presence of a marker file will not
affect the output.

NB: You can also set this option via Tp-Note’s configuration
file with the key ‘arg default.export link rewriting’.

7 THE NOTE’'S DOCUMENT STRUCTURE

Tp-Note considers a text file to be a valid note file if its:

« file extension is listed in one of the configuration file variable
‘filename.extensions’; if its

e content has a valid YAML header and

* the YAML header contains a key whose name is defined in the
configuration file variable ‘“tmpl.compulsory header field’ (de-
fault ‘title’).

A Tp-Note note file is always UTF-8 encoded. As newline, either
the Unix standard “\n’ or the Windows standard “\r\n’ is accepted.
Tp-Note writes out newlines according the operating system it
runs on.

7.1 The document’s header and body

Tp-Note is designed to be compatible with ‘Pandoc’s and’RMarkdowns
document structure as shown in the figure below. In this docu-
mentation the terms “YAML header”, “header” and “front matter”
are used as synonyms to designate the document’s metadata block
at the beginning of the text file:

<YAML-front-matter>

<document-body>

16/60

The YAML front-matter starts at the beginning of the document
with ‘---" and ends with “...” or ‘---’. Note that according to the
YAML standard, string literals are always encoded as JSON
strings. By convention, a valid Tp-Note file has at least one YAML
field named ‘title:’ (the name of this compulsory field is defined
by the “tmpl.compulsory header field’ variable in the configuration
file and can be changed there).

Note that prepended text, placed before the YAML front-matter, is
ignored. If present, the skipped text must not be longer than 1024
Unicode characters (cf. constant ‘BEFORE_HEADER MAX IGNORED CHARS’
in Tp-Note’s source code file ‘content.rs’) and it must be followed
by at least one blank line:

Prepended text is ignored.

<YAML-front-matter>

<document-body>

There is no restriction about the markup language being used in
the note’s text body. However, the default templates assume Mark-
down or ReStructuredText and the file extensions ‘.md’ and ‘. rst’.
Both can be changed easily by adapting Tp-Note’s configuration
file. Besides the requirements concerning its header, a valid Tp-
Note file must have a filename extension that is listed in the
configuration file variable: ‘filename.extensions’. The latter also
determines which internal markup language render is called for
Tp-Note’s internal viewer.

7.2 Links to resources and other documents

7.2.1 Link types

The document’s body often contains (inline) links to resources
e.g. images and links to other documents. This section describes
how the automatic path rewriting of local links works.

In general, the link syntax depends on the markup language used
in the Tp-Note file. The following examples illustrate the different
link types Tp-Note understands:

Link type Example in Markdown notation
Absolute URL ‘[blog] (<https://blog.getreu.net>)’
lfiigllgtlve URL (=local ‘“I'[Alt text](<images/my logo.png>)’
Absolute local link “I[Alt text](</images/my logo.png>)’
Relative local link “I[Alt text](<images/my logo.png>)’

17/60

Link type Example in Markdown notation

Relative local link ‘Imy doc]l(<../../notes/31-my doc.md>)’
Relative local autolink ‘<tpnote:../../notes/31-my%20doc.md>’
Shorthand link ‘Imy doc](<../../notes/31>)’
Shorthand autolink ‘<tpnote:../../notes/31>’
Eormatted shorthand ‘<tpnote:../../notes/31?-->)’
link

Remarks:

» The base for absolute local links is the first parent directory
containing the marker file ‘“tpnote.toml’. If absent, absolute loc-
al links refer to the root directory ‘/’.

» Shorthand link: Instead of writing out the full link destination,
e.g. ‘[my doc](<./docs/20230508-my note.md>)’, you can shorten
the link to ‘[my doc](<docs/20230508>)’ indicating only the des-
tination’s sort-tag. Alternatively, the same shorthand link can
be expressed as autolink as well: ‘<http:docs/20230508>". NB, if
more than one document with the same sort-tag exist in a dir-
ectory, the viewer only displays the first in alphabetical order.
To set up a different order, you can extend the sort-tag until it
becomes unique, e.g. by renaming the destination document in
the above example to ‘./ docs/20230508a-my note.md’. This way
you obtain the unique sort-tag 20230508a’.

Although Tp-Note’s built in viewer follows absolute and relative
local links, usually the latter are preferred. They make moving
documents easier, as relative links do not break when the source
and the destination documents are moved together.

As mentioned above, the shortest way to refer to other Tp-Note
documents, is indicating their sort-tag only, e.g. ‘<tpnote:dir/123>’
and ‘[my file](<tpnote:dir/123>)’. If the other document is located
in the same directory, the links are even shorter: ‘<tpnote:123>’
and ‘[my file](<tpnote:123>)’.

7.2.2 Local links in HTML export

Tp-Note’s exporter function ‘- -export’ converts a given Tp-Note
file into HTML and adds “.html’ to the output filename. Links in
the documents content to other Tp-Note files are hereby rewritten
by appending ‘.html’ to their URLs. This way you can convert
groups of documents to HTML and later jump from document to
document in your web browser. The option ‘- -export-link-
rewriting’ allows you to fine-tune how local links are written out.
Valid values are: ‘off’, ‘short’ and ‘long’.

In order to achieve this, the user must respect the following con-
vention concerning absolute paths in local links in Tp-Note docu-
ments: When a document contains a local link with an absolute

18/60

path, the base of this path is considered to be the directory where
the marker file ‘“tpnote.toml’ resides (or ‘/’ in none exists). The
option ‘--export-link- rewriting’ decides how local links in the Tp-
Note document are converted when the HTML is generated. If its
value is ‘short’, then local links with relative paths are converted
to absolute paths. The base of the resulting path is where the
‘tpnote.toml’ file resides (or / if none exists). Consider the
following example ‘- -export-link-rewriting=short’:

* The Tp-Note file ‘/my/docs/car/bill.md’ contains

* an absolute local link: ‘/car/scan. jpg’,

* and another relative local link: ‘. /photo.jpg’.

* The document root marker is: ‘/my/docs/tpnote.toml’.

The images in the resulting HTML will appear as

e ‘/car/scan.jpg’.
* ‘/car/photo.jpg’.

For ‘--export-link-rewriting=1long’, in addition to the above, all ab-
solute paths in local links are prepended with the marker file’s
directory. Consider the following example:

* The Tp-Note file ‘/my/docs/car/bill.md’ contains

* an absolute local link: ‘/car/scan. jpg’,

* and another relative local link: ‘. /photo.jpg’.

* The document root marker is: ‘/my/docs/tpnote.toml’.

The images in the resulting HTML will appear as

* ‘/my/docs/car/scan.jpg’.
* ‘/my/docs/car/photo.jpg’.

Summary: The right ‘- -export-link-rewriting’ choice depends on
how you view the resulting HTML.: if you publish on a web server,
then ‘short’ might be a good choice (do not forget to place a
marker file ‘tpnote.toml” somewhere in the document’s path). If
you view the HTML file directly in your web browser, better
choose “long’.

7.2.3 Local links with format strings

So far, we have seen how Tp-Note’s viewer and HTML exporter
converts the destination of local links ‘[text] (destination)’. Con-
cerning the local link’s text property, the situation is simpler as
the text property never changes during the above discussed re-
writing process. However, it is possible to overwrite the displayed
text property by appending a format string to the destination:
‘[formatted destination](destination?format string)’.

All local links in the following tables have the same link
destination ‘dir/0lac-Tulips--red, yellow.md’. The examples differ
only in the way the link is displayed in the browser.

19/60

Local link What you see
‘Imatters](<dir/0lac-Tulips--red, yellow.md>)" matters
‘Imatters](<dir/0lac>)’ matters

Formatted local link What you see

‘[whatever] (<dir/0lac-Tulips--red,

yellow.md?>)’ Tulips-red, yellow

‘Iwhatever] (<dir/0lac?>)’ Tulips-red, yellow
‘[whatever] (<dir/0lac?,>)’ Tulips-red
‘[whatever](<dir/0lac?-->)’ Tulips

‘[whatever] (<dir/0lac?--:,>)’ red

‘Iwhatever] (<dir/0lac?#>)’ Olac

Olac-Tulips-red, yel-

‘[whatever] (<dir/0lac??>)’ low.md

Observations:

1. The format operator ‘?’ (not followed by a ‘#’) strips the path,
the sort-tag, the copy-counter and the filename extension. In
other words, it keeps only the file stem.

2. The string following the question mark is the to pattern: ?
<to>’. It marks the exclusive end of the matching.

3. Consider the pattern ‘?<from>:<to>": The string before the colon
is the from pattern, the string after the colon is the to pattern.
Patterns are always searched from the start of the string,

e.g. in Latin scripts from the left to the right.

4. The format operator ‘?# prints the sort-tag.

5. The format operator ‘??’ prints the whole filename.

6. All format operators can be optionally followed by a search
pattern.

Local autolink What you see

‘<tpnote:dir/0lac-Tulips--red, dir/0Olac-Tulips-red,

%20yellow.md>’ %20yellow.md

‘<tpnote:dir/0lac>’ dir/Olac

Formatted local autolink What you see

‘<tpnote:dir/0lac-Tulips--red,

%20yellow. nd?>’ Tulips-red, yellow

‘<tpnote:dir/0lac?>’ Tulips-red, yellow

Olac-Tulips-red, yel-

‘ . di 727>’
<tpnote:dir/0lac??> low.md

Olac-Tulips-red, yel-

‘ . di ?27.>
<tpnote:dir/0lac??.> low

J

‘<tpnote:dir/0lac??:.>

20/60

Formatted local autolink What you see
Olac-Tulips-red, yel-

low
‘<tpnote:dir/0lac??-:,>’ Tulips-red
‘<tpnote:dir/0lac??--:,>’ red

8 METADATA FILENAME SYNCHRONIZATION

Consider the following Tp-Note filename generated with the de-
fault filename scheme (cf section “Filename synchronization
schemes” for other schemes):

20151208-Make this world a better place--Suggestions.md
The filename has 4 parts:

{{ fm.fm sort tag }}-{{ fm.fm title }}--{{ fm.fm subtitle }}.
{{ fm.fm file ext }}

The ‘-’ between ‘{{ fm.fm sort tag }} and ‘{{ fm.fm title }}’is
hereafter referred to as sort-tag separator
(cf. “filename.sort tag.separator’).

A so-called sort tag is an alphanumeric prefix at the beginning of
the filename. It is used to order files and notes in the file system.
Besides numerical digits and lowercase letters, a sort tag may
contain any combination of * ’, *-’, ‘=" and ‘.’ (cf.
‘filename.sort_tag.extra chars’). If a sort-tag contains lowercase
letters, only 2 in a row are allowed (cf.
‘filename.sort tag.letters in succession max’). For example:

* Chronological sort tag

20140211-Reminder.doc
20151208-Manual.pdf
2015-12-08-Manual.pdf

NB: All chronological sort-tags must have at least one counter
with 4 digits or more, e.g. 2015°. The character ‘-’ between the
counters is optional.

Tip: Always include the year with 4 digits in chronological sort-
tags.

» Sequence number sort tag

02-Invoices/

08-Tax documents/
09 2 144-Manual.pdf
09.9.1-Notes.md

21/60

NB: None of the counters exceeds 3 digits (cf.

‘filename.sort tag.sequential.digits in succession max’) which
is the criterion to recognize a sequence number sort-tag. The
largest counter in these examples is ‘144’, so all sort tags are
sequence numbers.

» Alphanumeric sequence number sort tag

02-Invoices/
08-Tax documents/
09b1l44-Manual.pdf
09il-Notes.md

NB: The example is equivalent to the previous one. The only
difference is, that the separators are expressed through the
alternation of digits and letters.

Summary:

1. A sort-tag is composed of a number of counters, which can be
numerical, e.g. ‘123.28’ or combined numerical/letter based,
e.g. ‘123ab’.

2. A counter is a set of digits (base 10) ‘123’ or a set of lowercase
letters (base 26) ‘ab’.

3. A letter-based counter can be maximal 2 letters wide. Its
maximum is ‘zz’
(cf. “filename.sort tag.letters in succession max’).

4. A sequential sort-tag is a sort-tag whose counters are at most 3
digits wide (cf. ‘sort_tag.sequential.digits in succession_max’).

5. The filter ‘incr_sort tag’ increments only sequential sort-tags.

6. In order not to confuse sequential and chronological sort-tags,
it is recommended to always write out the year in chronologic-
al sort-tags with 4 digits, e.g. "2013-08-10" or 20130810’".

Before Tp-Note creates a new note file, it searches the current dir-
ectory for the latest existing Tp-Note file. If that file starts with a
sequence number sort-tag, Tp-Note increments that number and
uses the result as sort-tag for the new note file. Otherwise, the
new note gets a chronological sort tag of today.

A note’s filename is said to be in sync with its metadata, when the
following holds (slightly simplified, see “tmpl.sync filename’):

filename on disk without sort tag == ‘{{ fm.fm title }}--
{{ fm.fm subtitle }}.md’

1

For example, consider the following document with the filename:

22/60

20211031-My file.md

and the content:

title: 1. The Beginning

subtitle: Note
author: Getreu
date: 2021-10-31
lang: en-GB

remainder: false

As ‘My file.md’ is not equal to ‘1. The Beginning--Note.md’, Tp-Note
will rename the file to ‘20211031-1. The Beginning--Note.md’. If the
filename had been ‘05 02-My file.md’, it would rename it to

‘05 02-1. The Beginning--Note.md’.

Note: When the YAML front-matter does not contain the optional
‘sort_tag’ variable, Tp-Note will never change a sort tag. Never-
theless, it might change the rest of the filename!

The reason why by default Tp-Note does not change sort tags is,
that they define their order in the file listing. In general this order
is independent of the notes content. The simplest way to organize
the sort tags of your files is by renaming them directly in your file
system. Nevertheless, in some cases you might want to have full
control over the whole filename through the note’s YAML front-
matter. For example, if — for some reason — you have changed
the document’s date in the front-matter and you want to change
the chronological sort tag in one go. In order to overwrite the
note’s sort tag on disk, you can add a ‘sort_tag’ string-variable to
its front-matter:

title: 1. The Beginning

date: 2021-10-31

sort tag: ‘20211101

Note, the above sort-tag value - here a number - must be enclosed
with quotes in order to label it as a string type. When Tp-Note
synchronizes the note’s metadata with its filename, it will also
change the sort tag from 20211631’ to ‘20211101’. The resulting file-
name becomes ‘20211101-1. The Beginning--Note.md’.

The ‘sort_tag’ variable also becomes handy, when you want to cre-
ate one single note without any sort tag:

title: 1. The Beginning

23/60

sort tag: v

In the same way, how it is possible to pin the sort tag of the note
from within the note’s metadata, you can also change the file
extension by adding the optional ‘file ext’ variable into the note’s
front-matter:

title: 1. The Beginning

file ext: rst

This will change the file extension from ‘.md’ to ‘. rst’. The result-
ing filename becomes 20211101-1. The Beginning--Note.rst’.

Important: ‘rst’ must be one of the registered file extensions listed
in the ‘filename.extensions’ variable in Tp-Note’s configuration file.
If needed you can add more extensions there. If the new filename
extension is not listed in one of these variables, Tp-Note will not
be able to recognize the note file as such and will not open it in
the external text editor and viewer.

Note: When a ‘sort tag’ variable is defined in the note’s YAML
header, you should not change the sort tag string in the note’s file
name manually by renaming the file, as your change will be over-
written next time you open the note with Tp-Note. However, you
can switch back to Tp-Note’s default behaviour any time by
deleting the ‘sort tag’ line in the note’s metadata. The same
applies to the ‘file ext’ variable.

The metadata filename synchronization feature can be disabled
permanently by setting the configuration file variable

‘arg default.no filename sync = true’. To disable this feature for
one time only, invoke Tp-Note with ‘--no-filename-sync’. To exclude
a particular note from filename synchronization, add the YAML
header field ‘filename sync: false’.

title: 1. The Beginning

filename sync: false

Note, that in the above described examples, the information flow
always goes from the YAML note header towards the note’s file-
name. However, when Tp-Note opens a text file without a YAML
header, a new header is added automatically. In this case the in-
formation flow goes from the filename towards the header, namely

24/60

in the opposite direction. Once the new header is prepended to
the text file, a regular filename synchronization - as described
above - is triggered and executed as described above.

8.1 Filename synchronization schemes

Technically, the rules how the note’s header relates to its filename
are encoded in customizable so-called filename templates (cf. sec-

tion Templates). These templates exist in two different variants
referred to as default scheme and zettel scheme:

1. The 'default' scheme:
For example:

title: 1. The Beginning
subtitle: Note

The filename synchronization template from the default
scheme set looks like (simplified):

{{ fm.fm sort tag }}-{{ fm.fm title }}--{{ fm.fm subtitle }}.
{{ fm.fm file ext }}

It generates from the above example the filename:
20211031-1. The Beginning--Note.md
2. The ‘zettel’ scheme:

Although the default scheme covers most of the daily note-
taking, Luhmann’s Zettelkasten knowledge management sys-
tem requires slightly different templates, hence the name
zettel scheme.

The following example illustrates the header fields of a typical
‘zettel’ scheme note file:

title: Lemon

keywords:

- fruit

- round

- sour taste
scheme: zettel

sort tag: 2b3

The [lemon] belongs to the Rutaceae family.
[lemon]: https://en.wikipedia.org/wiki/Lemon

25/60

The filename synchronization template from the zettel scheme
set looks like (simplified):

{{ fm.fm sort tag }}--{{ fm.fm title }} {{ fm.fm keywords }}.
{{ fm.fm file ext }}

It generates the following filename:

2b3--Lemon fruit round sour taste.md

9 CUSTOMIZATION

Tp-Note is shipped with a default internal configuration that can
be customized by merging a series of configuration files from vari-
ous locations into the default values. This happens in the following
order:

1. Unix and macOS only: ‘/etc/tpnote/tpnote.toml’
2. The file the environment variable ‘TPNOTE CONFIG’ points to.
3. The user’s configuration file:
o Unix: ‘~/.config/tpnote/tpnote.toml’
o Windows: ‘C:
\Users\<LOGIN>\AppData\Roaming\tpnote\config\tpnote.toml>’
> macOS: ‘/Users/<LOGIN>/Library/Application Support/tpnote’
4. At startup all parent directories of the note file path ‘<PATH>’
are searched for a marker file named ‘tpnote.toml’. If found,
the document root moves from ‘/’ to the found location. If
present and its content is not empty, Tp-Note interprets the
file’s content as configuration file.
5. The file indicated by the command line parameter ‘--config
<FI1E>'.

When Tp-Note starts, it first merges all available configuration
files into the default configuration. Then the resulting syntax is
checked. If not correct, the last sourced configuration file is re-
named (thus disabled) and Tp-Note starts with its internal default
configuration. For debugging, you can print out the merged result
with -V -b -d trace’.

tpnote -V -b -d trace |less
To write a custom configuration file, generate a template with ‘-C":
tpnote -C ~/.config/tpnote/tpnote.toml

The template shows all variables with their default values. When
you change a value, do not forget to uncomment the modified line
to activate your change. Also make sure to keep the ‘version’ vari-
able at the beginning of the file commented out. As any Tp-Note
upgrade might include a breaking change in the configuration file
structure, try to keep your custom configuration small.

26/60

Some filename and template related variables are grouped into a
‘scheme’. The shipped configuration file lists two schemes: ‘default
and ‘zettel’. The scheme used when creating a new note, is
selected by the command line option ‘- -scheme’, the environment
variable ‘TPNOTE_SCHEME’ or the configuration variable
‘arg_default.scheme’. The scheme selected when synchronizing a
Tp-Note header with its filename depends on the value of the
header variable ‘scheme:’ which defaults to ‘default’ (cf.
‘scheme sync default’).

’

Note, that the merging algorithm merges all values, except ar-
rays. These are usually replaced by the subsequent configuration
file. There is one exception though: top level arrays are also
merged. An example of this is the top level array ‘[[scheme]]’. In
the following example we overwrite the variable

‘extension default’ in the scheme ‘default’. All other variables
remain untouched.

[[scheme]]

name="default"

[scheme. filename]
extension default = "txt"

When your changes apply to all schemes, the best way is to modify
the base scheme (‘base scheme’) instead, since all schemes inherit
their (default) values from the base scheme:

[base_scheme.filename]
extension default = "txt"

Make sure, that your change is not explicitly overwritten in a
scheme definition, as the latter takes precedence.

To add a custom scheme you must explicitly overwrite all
variables that differ from the base scheme base scheme:

[[scheme]]
name="my-custom-scheme"
[scheme. filename]

[scheme.tmpl]

The following example illustrates how non-top-level arrays are
overwritten by the subsequent configuration file. The default con-
figuration lists about 20 MIME types. After merging the following
example, the configuration lists only the two MIME types ‘jpeg’
and ‘jpg’ in ‘served mime types’.

[viewer]

served mime types = [
["jpeg", "image/jpeg"],

27/60

[ujpgu’ “lmage/]peg“],

9.1 Register your own text editor

There are two ways to modify the default file editor, Tp-Note
launches when it starts: either you can modify the configuration
file variables ‘app args.*.editor’ and ‘app args.*.editor console’, or
alternatively, you can set the ‘TPNOTE EDITOR’ environment variable
(cf. examples in the chapter ENVIRONMENT VARIABLES below).

The configuration file variables ‘app _args.unix.editor’ and
‘app_args.unix.editor console’ define lists of external text editors
to be launched for editing. The lists contain by default well-known
text editor names and their command line arguments for Unix-like
operating systems. For other systems consult:
‘app_args.windows.editor’, ‘app _args.windows.editor console’,
‘app_args.macos.editor’ and ‘app _args.macos.editor console’. Tp-
Note tries to launch every text editor in ‘app _args.*.editor’ from
the beginning of the list until it finds an installed text editor. When
Tp-Note is started on a Linux console, the list

‘app_args.*.editor console’ is used instead. Here you can register
text editors that do not require a graphical environment, e.g. ‘vim’
or ‘nano’. In order to use your own text editor, just place it at the
top of the list. To debug your changes invoke Tp-Note with

‘tpnote --debug debug --popup --edit’.

The following example showcases the configuration for the Kate
file editor. The entry ‘kate’ launches the binary, while the
command line parameter ‘- -block’ guarantees, that the launched
process blocks until the user closes the editor. Tp-Note detects the
end of the process, checks if the title of the note files has changed
in its YAML header and renames the note file if necessary.

[app_args]
unix.editor = [
[
"kate",
"--block"
|
]

The equivalent configuration with environment variable:
TPNOTE EDITOR="kate --block" tpnote

All items in the above list are subject to limited template expan-
sion allowing to insert the value of environment variables.
Consider the following example:

[app_args]
windows.editor = |

28/60

"{{get _env(name=\"LOCALAPPDATA\")}}\\Programs\\Microsoft
VS Code\\Code.exe",
Il_nll’

_W ,

]

When the configuration file is loaded, the above expression

‘{{ get _env(name="LOCALAPPDATA") }} expands under Windows for a
user with the username ‘Joe’ to ‘C:\User\Joe\AppData\Local’ result-
ing in:

[app_args]
windows.editor = |
[
"C:\\User\\Joe\\AppData\\Local\\Programs\\Microsoft VS Code\
\Code.exe",
"--new-window", "--wait",
]
]

In general, when you configure Tp-Note to work with your text ed-
itor, make sure, that your text editor does not fork! You can check
this by launching the text editor from the command line: if the
command prompt returns immediately, then the file editor forks
the process. On the other hand everything is OK, when the com-
mand prompt only reappears at the moment the text editor is
closed. Many text editors provide an option to restrain from
forking: for example the Visual Studio Code file editor can be
launched with the ‘- -wait’ option, Vim with ‘--nofork’ or Kate with
‘--block’.

However, Tp-Note also works with forking text editors. Although
this should be avoided, there is a possible workaround. Observe
the following example:

$ TPNOTE EDITOR="kate" tpnote
/home/getreu/20230714-getreu--Note.md
$

In the above example Tp-Note launches the ‘kate’ editor in a fork-
ing manner as the command line flag ‘- -block’ is missing. Intern-
ally the editor process launching returns immediately, leaving Tp-
Note without any means to detect when exactly the user closes
the editor. Hence, Tp-Note is not able to check if the user has
changed the note’s header and no filename synchronization can
occur afterwards.

As a workaround, you can manually trigger the filename
synchronization after editing with ‘tpnote --batch "$FILE"’:

29/60

FILE=$(tpnote --batch)
tpnote --view "$FILE"&
kate "$FILE"

tpnote --batch "$FILE"

Whereby ‘FILE=$(tpnote --batch)’ creates the note file, ‘kate
"$FILE"’ opens the text editor and ‘tpnote --batch "$FILE"’ syn-
chronizes the filename after editing.

NB: Try to avoid forking at all cost. As mentioned above, most text
editors have a command line flag to prevent the process from
forking:

TPNOTE EDITOR="kate --block" tpnote
Register a Flatpak Markdown editor

Flathub for Linux is a cross-platform application repository that
works well with Tp-Note. To showcase an example, we will add a
Tp-Note launcher for the Mark Text Markdown text editor
available as Flatpak package. Before installing, make sure that
you have set up Flatpack correctly. Then install the application
with:

sudo flatpak install flathub com.github.marktext.marktext
To test, run Mark Text from the command line:
flatpak run com.github.marktext.marktext

Then place a Tp-Note configuration in its search path (e.g.
‘~/.config/tpnote/tpnote.toml’) with the following content:

[app_args]
unix.editor = [["flatpak", "run",
"com.github.marktext.marktext",] 1

The structure of this variable is a list of lists. Every item in the
outer list corresponds to one entire command line launching a
different text editor, here Marktext. When launching, Tp-Note
searches through this list until it finds an installed text editor on
the system.

Save the modified configuration file. Next time you launch Tp-
Note, the Mark Text-editor will open.

Register a console text editor running in a terminal emulat-
or

30/60

https://www.flathub.org/home
https://www.flathub.org/apps/details/com.github.marktext.marktext
https://flatpak.org/setup/

In this setup Tp-Note launches the terminal emulator which is
configured to launch the text editor as child process. Neither
process should fork when they start (see above).

Here, some examples you can adjust to your needs and taste:

* Neovim in Xfce4-Terminal:

[app_args]
unix.editor = [
[
"xfce4-terminal",
"--disable-server",

-x",
"nvim",
"+colorscheme pablo",
"+set syntax=markdown",
1,
]

* Helix-editor in XFCE4-Terminal:

[app_args]
unix.editor = [
[
"xfce4-terminal",
"--disable-server",

_X)
IIhXII ,
1,
]

e Helix in LXTerminal:

[app_args]
unix.editor = [
[
"Ixterminal",
"--no-remote",
"
"hx",
1,
]

e Helix in Xterm:

[app_args]
unix.editor = [
[
"xterm",
n _fall ,
"DejaVu Sans Mono",
n _fsll ,

31/60

"12",
.y
"hx",

1,

]

* Helix in Alacritty:

[app_args]
unix.editor = [
[
"alacritty",

-e",
IIhXII ,
1,
]

» Flatpack Helix in XFCE4 terminal

[app_args]
unix.editor = [

[

"xfce4-terminal", "--disable-server", "-x",
“flatpak", "run", "com.helix editor.Helix",
I,
]
unix.editor console = [
[
"flatpak", "run", "com.helix editor.Helix"

]I

9.2 Change the file extension for new note files

Tp-Note identifies the note’s markup language by its file extension
and renders the content accordingly (see ‘filename.extensions’
variable). For example: the variable ‘filename.extensions’ lists
some extensions, that are regarded as Markdown files:

[[scheme]]

name = "default"

[scheme.filename]

extensions = [
["txt", "ToMarkdown", "Markdown"],
["md", "ToMarkdown", "Markdown"],
["rst", "Disabled", "ReStructuredText"],
["htmlnote", "PassThrough", "Html"],
["txtnote", "Disabled", "PlainText"],
["adoc", "Disabled", "PlainText"],
["text", "ToMarkdown", "Markdown"],
["markdn", "ToMarkdown", "Markdown"],

32/60

["markdown", "ToMarkdown", "Markdown"],

]
The default file extension for new note files is defined as:

[base_scheme.filename]
extension default = "md"

If you prefer rather the file extension ‘.markdown’ for new notes,
write a configuration file with:

[base_scheme.filename]
extension default = "markdown"

This modification does not change how the note file’s content is
interpreted - in this case as Markdown - because both file
extensions ‘.md’ and ‘.markdown’ are rendered as ‘Markdown’ accord-
ing to ‘filename.extensions’.

9.3 Configure the natural language detection algorithm

When creating a new header for a new or an existing note file, a
linguistic language detection algorithm tries to determine in what
natural language the note file is authored. Depending on the con-
text, the algorithm processes as input: the header field ‘title:’ or
the first sentence of the text body. The natural language detection
algorithm is implemented as a template filter named ‘get lang’,
which is used in various Tera content templates ‘tmpl.* content’ in
Tp-Note’s configuration file. The filter ‘get lang’ is parametrized
by the configuration variables ‘“tmpl.filter.get lang.*’ containing
e.g. a list of ISO 639-1 encoded languages, the algorithm
considers as potential detection candidates, e.g.:

[base_scheme.tmpl]
filter.get lang.language candidates = ["en", "fr", "de", "et"]

As natural language detection is CPU intensive, it is advised to

limit the number of detection candidates to 5 or 6, depending on
how fast your computer is. The more language candidates you in-
clude, the longer the note file creation takes time. As a rule of

thumb, with all languages enabled the creation of new notes can
take up to 4 seconds on my computer. Nevertheless, it is possible
to enable all available detection candidates with the empty array:

[base_scheme.tmpl]
filter.get lang.language candidates = []

If the input text is usually written in one language only, set:

[base_scheme.tmpl]
filter.get lang.mode = "Monolingual"

33/60

The algorithm can also search for multiple languages in the input
text:

[base_scheme. tmpl]
filter.get lang.mode = "Multilingual”

The language detection algorithm can be fine-tuned with:

[base_scheme. tmpl]

filter.get lang.minimum_relative distance = 0.3
filter.get lang.consecutive words min = 7
filter.get lang.words total percentage min = 10

The above parameters can reduce false positives when
determining the natural language with the ‘get lang’ filter. Setting
them to 0 finds more languages, but leads to more false positives.
A higher value enforces criteria to ignore some words when
guessing the languages. The ‘minimum relative distance’ excludes
words that appear in more than one language. Valid values are
between ‘0.0’ and ‘0.99’. ‘consecutive words min’ sets the minimum
of consecutive words in one language to be considered.
‘words_total percentage min’ sets the minimum word count ratio in
percent a language must appear in the input text to be reported.

Once the language is detected with the ‘get lang’ filter, it passes
another filter called ‘map lang’. This filter maps the result of
‘get_lang’ - encoded as ISO 639-1 codes - to IETF language tags.
For example, ‘en’ is replaced with ‘en-US’ or ‘de’ with ‘de-DE’. This
additional filtering is useful, because the detection algorithm
cannot figure out the region code (e.g. -US or -DE) by itself. In-
stead, the region code is appended in a separate processing step.
Spell checker or grammar checker like [LTeX] rely on this region
information, to work properly.

The corresponding configuration looks like this:

[base_scheme. tmpl]

filter.get lang.language candidates = ["en", "fr", "de", "et"]
filter.map lang = [
[Ilenll’ Ilen_USII’]’

["de“, “de'DE",]’
]

When the user’s region setting - as reported from the operating
system’s locale setting - does not exist in above list, it is automat-
ically appended as additional internal mapping. When the filter
map_lang encounters a language code for which no mapping is con-
figured, the input language code is forwarded as it is without
modification, e.g. the input fr results in the output fr. Subsequent
entries that differ only in the region subtag, e.g.

‘['en', 'en- GB'], ['en', 'en-US']’ are ignored.

34/60

Note, that the environment variable ‘TPNOTE _LANG DETECTION’ - if set
- takes precedence over the

‘tmpl.filter.get lang.language candidates’ and

‘“tmpl.filter.map lang’ settings. This allows configuring the lan-
guage detection feature system-wide without touching Tp-Note’s
configuration file. The following example achieves the equivalent
result to the configuration hereinabove:

TPNOTE LANG DETECTION="en-US, fr, de-DE, et" tpnote

If you want to enable all language detection candidates, add the
pseudo tag ‘+all’ somewhere to the list:

TPNOTE LANG DETECTION="en-US, de-DE, +all" tpnote

In the above example the IETF language tags ‘en-US’ and ‘de-DE’
are retained in order to configure the region codes ‘US’ and ‘DE’
used by the ‘map lang’ template filter.

For debugging observe the value of ‘SETTINGS’ in the debug log
with:

tpnote -d trace -b

If wished for, you can disable Tp-Note’s language detection fea-
ture:

[base_scheme. tmpl]
filter.get lang.mode = "Disabled"

Like above, you can achieve the same with:

TPNOTE_LANG DETECTION="" tpnote

9.4 Localize the note’s front matter

By default, the front matter variable names are printed in English
when creating new note files from templates. For example the
header variable ‘fm.fm subtitle’ is displayed as ‘subtitle:’ in the
note’s header.

This translation relation is defined in the configuration file
variable ‘scheme.tmpl.fm var.localization’. Consider the following
simplified example:

[base_scheme. tmpl]
fm var.localization = [
["fm title", "title"],
["fm subtitle", "subtitle"],
["fm author", "author"],
["fm date", "date"],
["fm lang", "lang"],
["fm languages", "languages"],

35/60

["fm sort tag", "sort tag"],
["fm file ext", "file ext"],

["fm no filename sync", "no_filename sync"],
["fm filename sync", "filename sync"],
["fm scheme", "scheme"],

]

To change the natural language of the displayed header variable
names, modify the second column of the above table. For example:

[base_scheme.tmpl]
fm var.localization = |
["fm title", "Titel"],
["fm subtitle", "Untertitel"],
["fm author", "Autor"],
["fm date", "Datum"],
["fm lang", "Sprache"l],

["fm languages", "Sprachen"],

["fm sort tag", "Kennzeichen"],

["fm file ext", "Dateierweiterung"],
["fm no filename sync", "Keine Sync"],
["fm filename sync", "Dateinamensync"],
["fm scheme", "Schema"],

]

Keep in mind, that the templates do not change! Header variables
in templates always start with the identifier ‘fm.fm_’ (cf. first
column of the above table).

The above configuration changes the localization default for all
note files in the scope of the configuration file “tpnote.toml’. It is
also possible to use header variables in different languages side
by side with schemes:

[[scheme]]
name = 'Deutsch'’
[scheme.tmpl]
fm var.localization = [
["fm title", "Titel"],
["fm subtitle", "Untertitel"],
["fm author", "Autor"],
["fm date", "Datum"],
["fm lang", "Sprache"],
["fm languages", "Sprachen"],
["fm sort tag", "Kennzeichen"],
["fm file ext", "Dateierweiterung"],
["fm no filename sync", "Keine Sync"],
["fm filename sync", "Dateinamensync"],
["fm scheme", "Schema"],

36/60

This example defines an additional scheme called “Deutsch”. To
use the new scheme invoke Tp-Note with ‘tpnote --scheme Deutsch’.
It creates the following note file:

Titel: getreu

Untertitel: Note
Autor: Getreu
Datum: 2025-04-23
Sprache: de-DE
Schema: Deutsch

When you later reopen the note file with ‘tpnote 20250423-getreu- -
Note.md’, Tp-Note determines with the line ‘Schema: Deutsch’ its
scheme ‘Deutsch’. With the help of the associated localization table
above, Tp-Note translates the keys back to the English ‘fm.fm *’
versions.

Note, that the (de-)localization only applies to root level keys (e.g.
‘fm_foo’ in ‘fm.fm foo’). All nested keys names (e.g. ‘baz’ in
‘fm.fm_foo.baz’) are never translated.

9.5 Change the default markup language

Tp-Note’s core functionality, the management of note file headers
and filenames, is markup language agnostic. However, among the
shipped templates, there is one content template
‘tmpl.annotate file content’ that generates a hyperlink. As the hy-
perlink syntax varies depending on the markup language, Tp-
Note’s default internal ‘tmpl.annotate file content’ template
handles “Markdown” and “ReStructuredText” syntax. If you wish
to switch the default markup language with

‘filename.extension default’ to another language than ‘md’ or ‘rst’,
you should not forget to modify the ‘“tmpl.annotate file content’
content template as well.

Tp-Note’s built-in viewer is not markup language agnostic. It com-
prises three different markup renderers (cf. section Customize the
built-in note viewer):

e Markdown (file extension .md)
* ReStructuredText (file extension .rst) and
* PlainText (Link only renderer, file extension .txtnote)

37/60

9.5.1 Change the default markup language to
ReStructuredText

Tp-Note’s core function is a template system and as such it de-
pends very little on the used markup language. The default tem-
plates are designed in a way that they contain almost no markup-
specific code. Though there is one little exception in the
‘annotate file content’ template (see previous section).

When you open an existing note file, Tp-Note detects the note
file’s markup language from its file extension. To open a note
written in ReStructuredText just type:

tpnote mynote.rst
To create a new ReStructuredText note invoke Tp-Note with:
TPNOTE_EXTENSION DEFAULT=rst tpnote

You can change the Markup language of a specific note file by
adding the variable ‘file ext:’ to its YAML header. For example,
for ReStructuredText add:

title: some note
file ext: rst

To make ReStructuredText the default markup language for all
future new notes, write a configuration file ‘~/.config/tpnote/
tpnote.toml” with the following content:

[base_scheme.filename]
extension default="rst"

Or, if you wish to apply the change only to notes created with the
‘zettel’ scheme set:

[[scheme]]

name = 'zettel'
[scheme. filename]
extension default="rst"

The latter overwrites the ‘extension default’ variable of the
‘zettel’ scheme, but leaves the ‘default’ scheme untouched.
9.6 Change the sort tag character set

Sort-tags for new notes are generated with the “tmpl.* filename’
templates. Before changing the sort-tag generation scheme in
these templates, make sure to enable the right set of potential
sort-tag characters.

38/60

In the default scheme, the digits ‘0’-‘9’, all lower case letters and

) f« f«

the characters * ’, *-’, “.” are recognized as being part of a sort tag
when they appear at the beginning of a filename. This set of
characters can be modified with the

‘filename.sort tag.extra chars’ configuration variable. If defined,
the ‘filename.sort tag.separator’ (by default ‘-’) marks the end of a
sort tag without being part of it. In addition, one special character
‘filename.sort tag.extra separator’ (by default ‘'’) might be inser-
ted by the filename template directly after the ‘-’ to avoid ambigu-

ity.

9.7 Customize the filename synchronization scheme

The filename synchronization scheme is fully customizable
through Tp-Note’s filename templates. To design such a custom
scheme, start to set up your synchronization rules in the
‘“tmpl.sync_filename’ template. Then adjust all “tmpl.* filename’
templates to comply with these rules. In order to verify your
design, check that the following holds for any sequential
application of one ‘tmpl.* filename’ template followed directly by
the “tmpl.sync_filename’ template: The latter should never change
the filename initially set up by any ‘“tmpl.* filename’ template.

Secondly, make sure that in filename templates ‘“tmpl.* filename’,
sort-tags ‘{{ path | file sort tag }}’ are never inserted directly.
Instead, prepend the sort tag with ‘prepend(with sort tag=path]|
file sort tag)’ to the following expression, e.g.:

{{ fm.fm title | sanit | prepend(with sort tag=path|
file sort tag) }}

The filter ‘prepend(with sort tag=<...>)’ decides whether to insert
the ‘sort tag.separator="-"" and/or the

‘sort_tag.extra separator="'"’ characters. These heuristics enable
Tp-Note to identify unequivocally sort-tags in filenames, which
avoids potential cyclic filename changes. Or, in other words: the
‘“tmpl.sync_filname’ template must always give the same result,
even after repeated application.

To debug your ‘tmpl.sync_filename’ template, create a test note file
‘test.md” and invoke Tp-Note with ‘- -debug trace’ and ‘--batch’:

tpnote --batch --debug trace test.md

9.8 Store new note files by default in a subdirectory
When you are annotating an existing file on disk, the new note file

is placed in the same directory by default. To configure Tp-Note to
store the new note file in a subdirectory, let’s say ‘Notes/’, instead,

39/60

you need to modify the templates
‘scheme.tmpl.annotate file filename’ and
‘scheme.tmpl.annotate file content’:

First, create a configuration file ‘~/.config/tpnote/tpnote.toml’
with:

[base_scheme.tmpl]
annotate file content = """
COMPLETE HERE

annotate_file filename = """
COMPLETE HERE

In the above replace the string ‘COMPLETE HERE’ with the default val-
ues for the variables you obtain with ‘tpnote -C - | less’.

Then, replace in ‘annotate file filename’ the string:

{{ fm.fm_title | sanit | prepend(with sort tag=tag) }}\

with:

Notes/{{ fm.fm title | sanit | prepend(with sort tag=tag) }}\
and in ‘annotate file content’:

[{{ path | file name }}](<{{ path | file name }}>)

with:

[{{ path | file name }}]1(<../{{ path | file name }}>)

The scheme ‘zettel’ overwrites the base ‘annotate file filename’
template. Therefore, in case you use the ‘zettel’ scheme as well,
repeat the above section and append the following to your
configuration file and repeat the above.

[[scheme]]

name = 'zettel'
[scheme.tmpl]
annotate file content = """
COMPLETE HERE

annotate file filename = """
COMPLETE HERE

To test your configuration, place a ‘test.pdf’ file in the current dir-
ectory and annotate that file with:

40/60

tpnote test.pdf

This should create a new note file ‘. /Notes/test.pdf--Note.md” and
open your web browser with a link to ‘test.pdf’. Clicking on that
link, the PDF page should be shown. The default behaviour,
without this customization, is to create the new note file “./
test.pdf--Note.md’ in the current directory.

To test the ‘zettel’ scheme configuration invoke Tp-Note with:

tpnote -s zettel test.pdf

9.9 Customize the built-in note viewer

9.9.1 Change the way how note files are rendered for
viewing

Currently, three markup renderers are available: ‘Markdown’,
‘ReStructuredText’ and ‘PlainText’. The configuration file variable
‘filename.extensions’ associates several note file extensions with
one of these markup renderers. In case none of them suit you, it is
possible to disable the viewer feature selectively for one particu-
lar note file extension by associating it with the pseudo
‘RendererDisabled’ renderer. If you wish to disable the viewer fea-
ture overall (for all file extensions), set the variable

‘arg default.edit = true’.

9.9.2 Delay the launch of the web browser

By default, Tp-Note launches two external programs: some text
editor and a web browser. If wished for, the configuration variable
‘viewer.startup delay’ allows delaying the launch of the web
browser some milliseconds. This way the web browser window
will always appear on top of the editor window. A negative value
delays the start of the text editor instead.

9.9.3 Change the HTML rendition template

After the markup rendition process, Tp-Note’s built-in viewer gen-
erates its final HTML rendition through the customizable HTML
templates ‘tmpl html.viewer’, “tmpl html.viewer error’ and
‘tmpl_html.exporter’. Unlike content templates and filename tem-
plates, all HTML templates escape HTML critical characters in
variables by default. To disable escaping for a specific variable,
add the ‘safe’ filter in last position of the filter chain. Please note,
that in general, the ‘safe’ filter is only recommended directly after
the “to_html’ and the ‘markup to html’ filters, because these handle
critical input by themselves. The following simplified code sample,
inspired by the ‘tmpl _html.viewer’ template, illustrates the
available variables:

41/60

[tmpl_html]
viewer = '"''
%- set ext = fm.fm file ext | default(value=extension default) -
%}
<!DOCTYPE html>
<html lang="{{ fm.fm lang | default(value='en') }}">
<head>
<meta charset="utf-8">
<title>{{ fm.fm title }}</title>
<link rel="stylesheet" href="{{ viewer doc css path }}">
<link rel="stylesheet" href="{{ viewer highlighting css path }}">
</head>
<body>
<pre class="doc-header">{{ doc_fm text }}</pre>
<hr>
<div class="doc-body">
{{ doc.body | markup to html(extension=ext) | safe }}
</div>
<script>{{ viewer doc js | safe }}</script>
</body>
</html>

Specifically:

o ‘{{ fm.fm_* }}’ are the deserialized header variables. Note, that
the header variables may be localized, e.g. ‘Untertitel’. Never-
theless, in templates always use the English version,

e.g. ‘fm.fm subtitle’. All content template variables and filters
are available. See section Template variables above.

e ‘{{ viewer doc css path }}’is the CSS stylesheet path required
to format an HTML rendition of a Tp-Note document. This path
is an internal constant and understood by Tp-Note’s internal
web server.

* ‘{{ viewer highlighting css path }}’ is the CSS stylesheet path
required to highlight embedded source code. This path is an
internal constant and it is understood by Tp-Note’s internal
web server.

e ‘{{ doc.header }}’ is the raw UTF-8 copy of the header. Not to
be confounded with the dictionary variable ‘{{ fm }}’.

* ‘{{ doc.body | markup to html(extension=ext) | safe }} is the
note’s body as HTML rendition. The parameter ‘extension’ des-
ignates the markup language as specified in the
‘filename.extensions-*’ variables.

* ‘{{ viewer doc_js | safe }}’ is the JavaScript browser code for
live updates.

* ‘{{ extension default }}’ (c.f. section Template variables).

42/60

* ‘{{ username }}’ (c.f. section Template variables).
* ‘{{ lang }}’ (c.f. section Template variables).

* ‘{{ my val | to html | safe }} is the HTML rendition of the
‘my_val’ variable (c.f. section Template filter).

o ‘{{'fm.fm _title' | name}}’ prints the localized name of the
‘fm.fm_title’ variable, e.g. ‘title’ in English or ‘Titel’ in Ger-
man.

Alternatively, the header enclosed by ‘<pre>...</pre>’ can also be
rendered as a table:

<table class="fm">
<tr>
<th class="fmkey">{{'fm.fm title' | name}}:</th>
<th class="fmval">
 {{ fm.fm_title| default(value='') | to html | safe }}</
b>
</th>
</tr>
<tr>
<th class="fmkey">{{'fm.fm subtitle' | name}}:</th>
<th class="fmval">
{{ fm.fm subtitle | default(value='"') | to html | safe }}
</th>
</tr>
{% for k, v in fm | remove(key='fm title')|
remove (key='fm subtitle')| %}
<tr>
<th class="fmkeygrey">{{ k | name }}:</th>
<th class="fmvalgrey">{{ v | to _html | safe }}</th>
</tr>
% endfor %}
</table>

The error page template “tmpl_html.viewer error’ (see below) does
not provide ‘fm.fm_*’ variables, because of possible header syntax
errors. Instead, the variable ‘{{ doc error }}’ contains the error
message as raw UTF-8 and the variable ‘{{ doc_text |
markup to html | safe }}’ the HTML rendition of the text source
with clickable hyperlinks:

[tmpl_html]
viewer error =
<!DOCTYPE html>
<html lang=\"en\">

<head>

<meta charset=\"UTF-8\">
<title>Syntax error</title>
</head>

<body>

43/60

<h3>Syntax error</h3>

<p> in note file: <pre>{{ path }}</pre><p>
<div class=\"note-error\">

<hr>

<pre>{{ doc error }}</pre>

<hr>

</div>

{{ doc_text | markup to html | safe }}
<script>{{ viewer doc js | safe }}</script>
</body>

</html>

9.9.4 Customize the built-in HTML exporter

Customizing Tp-Note’s HTML export function works the same way
as customizing the built-in viewer. There are some slight
differences though: The role of the “tmpl html.viewer’ template -
discussed above - is taken over by the ‘“tmpl _html.exporter’ tem-
plate:

[tmpl_html]
exporter =
%- set ext = fm.fm file ext | default(value=extension default) -
%}

<!DOCTYPE html>
<html lang="{{ fm.fm lang | default(value='en') }}">
<head>
<meta charset="utf-8">
<title>{{ fm.fm title }}</title>
<style>
{{ exporter doc css | safe }}
{{ exporter highlighting css | safe }}
</style>
</head>
<body>

<pre class="doc-header">{{ doc fm text }}</pre>

<hr>

<div class="doc-body">

{{ doc.body | markup to html(extension=ext) | safe }}

</div>
</body>
</html>

In this template the same Tera variables as in “tmpl html.viewer’
are available, with one exception ‘{{ note js }}’, which does not
make sense in this context. As the exporter prints possible rendi-
tion error messages on the console, there is no equivalent to the
“tmpl_html.viewer error’ template. Note, in contrast to the previous
‘“tmpl_html.viewer’ example, the source code highlighting CSS code
is now embedded into the HTML output with:

44/60

<style>

{{ exporter doc css | safe }}

{{ exporter highlighting css | safe }}
</style>

Note, the ‘safe’ filter disables the escaping of critical characters in
the CSS input. We have no security concerns in this context, be-
cause we have full control over the CSS input coming from the
configuration file variables ‘“tmpl _html.exporter doc css’ and
“tmpl_html.exporter highlighting theme’.

9.10 Choose your favourite web browser as note
viewer

Once the note is rendered into HTML, Tp-Note’s internal HTTP
server connects to a random port at the “localhost’ interface
where the rendition is served to be viewed with a web browser.
Tp-Note’s configuration file contains a list ‘app_args.unix.browser’
with common web browsers and their usual location on Unix-like
operating systems. For other systems consult
‘app_args.windows.browser’ and ‘app_args.macos.browser’. This list is
executed top down until a web browser is found and launched. If
you want to view your notes with a different web browser, simply
overwrite the internal ‘app args.unix.browser’ list and put your fa-
vourite web browser on top.

[app_args]
unix.browser = [["chromium", "--new-window", "--incognito"]]

Alternatively, you can set the ‘TPNOTE_BROWSER’ environment vari-
able (cf. examples in the chapter ENVIRONMENT VARIABLES be-
low).

In case none of the listed browsers can be found, Tp-Note
switches into a fallback mode with limited functionality, where it
tries to open the system’s default web browser. A disadvantage is,
that in fall back mode Tp-Note is not able to detect when the user
closes the web browser. This might lead to situations, where Tp-
Note’s internal HTTP server shuts down too early. In order to
check if Tp-Note finds the selected web browser as intended,
invoke Tp-Note with ‘tpnote --debug debug --popup --view’.

10 TEMPLATES

All TP-Note’s workflows are customizable through its templates
which are grouped in the ‘[scheme.tmpl]’ and in the

‘[scheme.tmpl html]’ section of Tp-Note’s configuration file. This
chapter deals with ‘[scheme.tmpl]’ templates which are responsible
for generating Tp-Note files. ‘[scheme.tmpl html]’ templates con-

45/60

cern only Tp-Note’s viewer feature and are discussed in the
chapters: Customize the built-in note viewer and Choose your fa-
vourite web browser as note viewer.

Tp-Note captures and stores its environment in Tera variables. For
example, the variable ‘{{ dir path }}’ is initialized with the note’s
target directory. The variable ‘{{ clipboard }}’ contains the con-
tent of the clipboard. To learn more about Tera variables, launch
Tp-Note with the ‘- -debug trace’ option and observe what informa-
tion it captures from its environment.

10.1 Template types

The content of a new note is composed by one of Tp-Note’s intern-
al customizable templates, hence the name Tp-Note, where Tp
stands for “template”. Which of the internal templates is applied
depends on the context in which Tp-Note is invoked: e.g. the tem-
plate when creating a new note file in a given directory is called
“tmpl.from dir content’.

In total, there are 3 different ‘tmpl.* content’ templates:

e “tmpl.from dir content’
e “tmpl.from text file content’
* “tmpl.annotate file content’

In general, the templates are designed in a way, that the text input
stream - usually originating from the clipboard - ends up in the
body of the note file, whereas the environment - such as the
username - ends up in the header of the note file.

Once the content of the new note is set by one of the above con-
tent templates, another template type comes into play: the so-
called filename template. Each content template has a corres-
ponding filename template, e.g.:

‘“tmpl.from dir filename’

“tmpl.from text file filename’
‘tmpl.annotate file filename’

‘“tmpl.sync_filename’ (no corresponding content template)

As the name suggests, the role of a filename template is to de-
termine the filename of the new note. This is done by evaluating
(deserializing) it’s YAML header. The values of the note’s YAML
header fields are can be accessed in filename templates through
various ‘{{ fm.fm <key> }}’ dynamically created template vari-
ables. For example the value of the YAML header field ‘title:’ can
be accessed with ‘{{ fm.fm title }}’. Once the filename is set, Tp-
Note writes out the new note on disk.

46/60

Most of the above templates are dedicated to the creation of new
note files. However, two of them have a special role: prepend
header to text file and synchronize filename:

* Prepend header to text file: When Tp-Note opens a regular text
file without a YAML header, a new header is prepended auto-
matically. It’s data originates mainly form the filename of the
text file. The templates applied in this use case are:
‘tmpl.from text file content’ and ‘tmpl.from text file filename’.

» Synchronize filename: This function mode is invoked when [Tp-
Note] opens an existing note file, after it’'s YAML header is
evaluated. The extracted header information is then applied to
the “tmpl.sync_filename’ template and the resulting filename is
compared to the actual filename on disk. If they differ, [Tp-
Note] renames the note file. Note, the ‘tmpl.sync_filename’ tem-
plate operates on its own without a corresponding content
template.

Note, that in the operation mode synchronize filename, the header
data overwrites the filename of the note, whereas in the operation
mode prepend header the filename data is copied into the new
prepended header. Keep in mind, that even in the latter mode the
filename might change slightly. This is because after the header
creation with the “tmpl.from text file content’ template, the

‘“tmpl.from text file filename’ template is applied, which might
cause a slight filename modification due to its sanitization filters
(cf. ‘sanit()’ in the section Template filters).

You can disable the prepend header feature by setting the config-
uration file variable ‘arg default.add header = false’. To disable all
filename synchronization, set ‘arg default.no filename sync =
true’. This guarantees, that Tp-Note will never change neither the
filename nor the YAML header of an existing file.

For a more detailed description of templates and their defaults,
please consult the ‘const’ definitions in Tp-Note’s source code files
‘config.rs’ and ‘note.rs’ in the directory ‘tpnote-lib/src/’.

10.2 Template variables

All Tera template variabl nd functions can be used within Tp-
Note’s templates. For example ‘{{ get env(name='LANG') }}' gives
you access to the’LANG’ environment variable.

In addition, Tp-Note defines the following variables:

* ‘{{ path }}’ is the canonicalized fully qualified path name cor-
responding to Tp-Note’s positional command line parameter
‘<path>’. If none was given on the command line, ‘{{ path }}’
contains the current working directory path.

47/60

https://tera.netlify.com/docs/#templates

* ‘{{ dir path }}’ is identical to ‘{{ path }}’ with one exception:
if “{{ path }} points to a file, the last component (the file
name) is omitted and only the directory path is retained. If
‘{{ path }}’ points to a directory, ‘{{ dir _path }}’ equals
{{ path }}".

* ‘{{ doc_fm text }}’:is the header as raw text of the file
‘{{ path }}’ points to. Note, this variable is only available in the
templates ‘from text file *’, ‘sync_filename’ and the HTML
templates below.

* ‘{{ doc.body }}’: is the content of the file ‘{{ path }}’ points to.
If the file starts with a YAML header, its raw text is stored in
‘{{ doc.header }}’. Note, these variables are only available in
the templates: ‘from text file content’, ‘sync filename’ and in
the HTML templates ‘tmpl_html.*’.

* ‘{{ doc _file date }}’:is the file system creation date of the file
‘{{ path }}’ points to. This variable is only available in the
templates ‘from text file *’, ‘sync_filename’ and in HTML tem-
plates. This condition implies, that ‘{{ path }}’ points to a file.
Note: on some platforms and with some filesystems, the
variable ‘{{ doc file date }}’ might not be available. Here the
file modification date is used instead.

* ‘{{ txt_clipboard.body }} is the complete ‘plain/text’ clipboard
text. In case the clipboard’s content starts with a YAML
header, only the non YAML content is retained.

‘{{ txt_clipboard.header }}’ is the YAML header section of the
clipboard data, if it exists. If not, the variable is empty.

* ‘{{ html clipboard.body }} and ‘{{ html clipboard.header }}’
contain the same text as their “txt clipboard.*’ counterparts,
but as HTML. The HTML clipboard provides more information,
e.g. hyperlinks contain a link destination besides its link text.
In the TXT clipboard you see only link texts.

e ‘{{ stdin.body }}’ is the complete text content originating from
the input stream ‘stdin’. This stream can replace the clipboard
when it is not available. In case the input stream’s content
starts with a YAML header, the latter does not appear in this
variable. ‘{{ stdin.header }}’ is the YAML section of the input
stream, if one exists. Otherwise, the variable is still defined,
but its value is the empty string.

* ‘{{ extension default }}’ is the default extension for new notes
(can be changed in the configuration file),

e ‘{{ username }}’is the content of the first non-empty
environment variable: ‘TPNOTE_USER’, ‘LOGNAME’, ‘USER’ or
‘USERNAME’.

48/60

* ‘{{ lang }}’ contains the user’s language tag as defined in REC
5646. Not to be confused with the UNIX ‘LANG’ environment
variable from which this value is derived under Linux/macOS.
Under Windows, the user’s language tag is queried through
the WinAPI. If defined, the environment variable ‘TPNOTE LANG’
overwrites the value of ‘{{ lang }}’ (all operating systems).

» ‘{{ force lang }}’ is a copy of the command line option ‘- -
force-lang’. If “--force-lang=-" then the value of ‘{{ lang }} is
copied into ‘{{ force lang }}’. This variable is always defined
and is empty when the command line option is not set.

The following ‘{{ fm.fm _* }}’ variables are typically generated,
after a content template was filled in with data: For example a
field named ‘title:’ in the content template ‘tmpl.from dir content’
will generate the variable ‘“fm.fm_title’ which can then be used in
the corresponding ‘“tmpl.from dir filename’ filename template.

‘{{ fm.fm_* }}’ variables are generated dynamically. This means, a
YAML front-matter variable ‘foo:’ in a note will generate a

‘{{ fm.fm _foo }}’ template variable. On the other hand, a missing
‘foo:” will cause ‘{{ fm.fm foo }} to be undefined. Please note,
that the header variables may be localized, e.g. ‘Untertitel:’. Nev-
ertheless, in templates always use the English version, e.g.
“fm.fm_subtitle’.

It is to be observed that ‘{{ fm.fm * }}’ variables are not available
in in the “tmpl.from text file content’ content template.

 ‘{{ fm.fm title }} is the ‘title:’ as indicated in the YAML
front-matter of the note.

 ‘{{ fm.fm subtitle }}’ is the ‘subtitle:’ as indicated in the
YAML front matter of the note.

o ‘{{ fm.fm author }}’is the ‘author:’ as indicated in the YAML
front-matter of the note.

* ‘{{ fm.fm lang }}’ is the “lang:’ as indicated in the YAML front-
matter of the note.

o ‘{{ fm.fm _file ext }}’ holds the value of the optional YAML
header variable ‘file ext:’ (e.g. ‘file ext: rst’).

* ‘{{ fm.fm_sort _tag }}’: The sort tag variable as defined in the
YAML front matter of this note (e.g. ‘sort tag: '20200312'’).

e ‘{{ fm }}’: is a collection (map) of all defined ‘{{ fm.fm * }}’
variables. It is used in the ‘“tmpl.from dir content’ template, typ-
ically in a loop like:

{{ fm.fm_title | to yaml(key='fm title') }}
{{ fm.fm _subtitle | to yaml(key='fm subtitle') }}

49/60

http://www.rfc-editor.org/rfc/rfc5646.txt
http://www.rfc-editor.org/rfc/rfc5646.txt

{{ fm | remove(key='fm title') | remove(key='fm keywords') |
to yaml }}

Important: there is no guarantee, that any of the above

‘{{ fm.fm_* }}’ variables are defined! Depending on the last con-
tent template result, certain variables might be undefined. Please
take into consideration, that a defined variable might contain the
empty string ‘' '’. Creating a new note file with a content tem-
plate, the note’s header is parsed into ‘{{ fm.fm * }}’ variables.
The latter are then type checked according configurable rules.
The rules are defined in “tmpl.filter.assert precondition’

For a more detailed description of the available template
variables, please consult the ‘const’ definitions in Tp-Note’s source
code file ‘note.rs’.

10.3 Template filters

In addition to Tera’s built-in filters, Tp-Note comes with some ad-
ditional filters, i.e.: ‘append(newline=true)’, ‘append(with=...)’,
“trunc’, ‘file copy counter’, ‘file ext’, ‘file name’, ‘file sort tag’,
‘file stem’, ‘flatten array’, ‘get lang’, ‘heading’, ‘html heading’,
‘html to markup(extension=..., default=...)’, ‘“insert(key=...,
value=...)’, ‘link dest’, ‘link text’, ‘link title’, ‘map _lang’,
‘prepend’, ‘prepend(newline=true)’, ‘prepend(with=...)’,
‘prepend(with _sort tag=...)’, ‘remove(key=...)’,

‘replace empty(with=...)’, ‘sanit’, “to_html’, “to_yaml’,
‘to_yaml(key=...)’, “to yaml(tab=...) and ‘trim file sort tag’.

A filter is always used together with a variable. Here are some ex-
amples:

* ‘{{ path | file name }}’ returns the final component of
‘{{ path }}'. If ‘{{ path }}’ points to a file, the filter returns the
complete filename including its sort tag, stem, copy-counter,
dot and extension. If the ‘<path>’ points to a directory, the filter
returns the final directory name.

* ‘{{ path | file sort tag }}’is the sort tag (numerical filename
prefix) of the final component of ‘{{ path }}’, e.g. ‘01-23 9’ or
20191022’. It is similar to ‘{{ path | file name }}’ but without
returning its stem, copy-counter and extension.

e ‘{{ path | file sort tag | assert valid sort tag }} does not
change the above output, but the filter asserts at runtime, that
the resulting type is either ‘String’ or ‘Number’ and that all char-
acters are part of the set ‘filename.sort tag.extra chars’. The
additional runtime check simplifies template debugging.

e ‘{{ path | file stem }} is similar to ‘{{ path | file name }}’

but without its sort tag, copy-counter and extension. Only the
stem of ‘{{ path }}’’s last component is returned.

50/60

https://tera.netlify.app/docs/#built-in-filters

* ‘{{ path | file copy counter }}’ is similar to ‘{{ path |
file name }}’ but without its sort tag, stem and extension.
Only the copy counter of ‘{{ path }}’’s last component is re-
turned.

* ‘{{ path | file ext }} is ‘{{ path }}”’s file extension without
dot (period), e.g. “txt’ or ‘md’.

* ‘{{ path | file ext | prepend(with='.") }}'is ‘{{ path }}”s file
extension with dot (period), e.g. “.txt’ or “.md’.

e ‘{{ path | trim file sort tag }}’ returns the final component
of ‘path’ which might be a directory name or a file name.
Unlike the ‘file name’ filter (which also returns the final
component), ‘trim_file sort tag’ trims the sort tag if there is
one.

e ‘{{ dir path | find last created file |

incr_sort tag(default="") }} searches ‘dir path’ for the most
recently created Tp-Note file, extracts the sort-tag from its file
name and increments it. If the incremented sort-tag (e.g. ‘13’)
exists on disk in the note’s directory already, the incrementa-
tion is performed by “branching” instead (e.g. ‘12a’). If the in-
crementation fails, for example because the input sort-tag is a
chronological sort-tag type or because it is empty, the ‘default’
value is returned.

e ‘{{ dir path | trim file sort tag }} returns the final compon-
ent of ‘dir path’ (which is the final directory name in
‘{{ path }}’). Unlike the ‘file name’ filter (which also returns
the final component), ‘trim file sort tag’ trims the sort tag if
there is one.

e {{ html clipboard.body | html to markup(extension=e,
default=d) }}’ converts the clipboard’s HTML content into the
target markup language specified by ‘{{ e }}’, e.g. ‘md’. If the
conversion fails or results in an empty string, stream the
content of the variable ‘{{ d }}’ instead.

e ‘{{ txt _clipboard.body | trunc }}’ is the first 200 bytes from
the clipboard.

* ‘{{ txt_clipboard.body | heading }}’ is the clipboard’s content
until the end of the first sentence, or the first newline.

* ‘{{ html clipboard.body | html heading }} searches in the
HTML clipboard input for e.g ‘<h2>HEADING</h2>’, and returns
the first HTML heading, e.g. ‘HEADING’.

* ‘“{{ html clipboard.body | link text }}’ is the name of the first
Markdown or ReStructuredText formatted link in the clip-
board.

51/60

* ‘{{ html clipboard.body | link dest }}’ is the URL of the first
Markdown or ReStructuredText formatted link in the clip-
board.

* ‘{{ html clipboard.body | link title }}’ is the title of the first
Markdown or ReStructuredText formatted link in the clip-
board.

* ‘{{ username | capitalize | to yaml(key='author',tab=12) }}’is
the capitalized YAML encoded username. As all YAML front-
matter is YAML encoded, the ‘to _yaml’ filter must be appended
to any template variable placed in the front-matter block. The
‘key="author'’ parameter prepends the key to the capitalized
username, e.g.: ‘autor: John’. Note, the first letter of ‘John’
starts at the tabulator position ‘“tab=12".

o ‘{{ fm.fm subtitle | sanit }}’ is the note’s subtitle as defined
in its front matter, sanitized in a file system friendly form.
Special characters are omitted or replaced by ‘-’ and “ ’. See
the section Filename template convention for more details
about this filter.

e {{ fm.fm _title | sanit | prepend(with sort tag=path|
file sort tag) }}’ is the note’s title as defined in its front-mat-
ter. Same as above, but the title string is prepended with the
note’s sort tag and with a ‘filename.sort tag.separator’ (by
default ‘-’). Eventually, a second
‘filename.sort tag.extra separator’ (by default) is inserted
after the first to guarantee, that one of the separators
unequivocally marks the end of the sort tag. This might be ne-
cessary to avoid ambiguity in case the ‘fm.fm_title’ starts with
a character defined in the ‘filename.sort tag.extra chars’ set.

LR

o ‘{{ fm.title | replace empty(with='no title')’ forwards the in-
put unchanged. In case the input is the empty string, the ‘with
string is forwarded instead.

7

e {{ fm | remove(key='fm title') | remove(key='fm author') |
to_yaml }}’ renders the collection (map) ‘fm’, exclusive of the
variables ‘fm.fm_title’ and ‘fm.fm author’ to YAML. Note, that
the filter ‘to yaml’ has no parameter ‘key’ in this context.

e {{ fm | insert(key='fm author', value='Getreu') | to yaml}}’
takes the collection (map) ‘fm’, inserts the key/value
‘fm_author’/‘Jens’ and renders the result into YAML. Note, that
the filter ‘to _yaml’ has no parameter ‘key’ in this context.

* ‘{{ fm | to yaml | append(newline=true) }}’ renders the collec-
tion (map) ‘fm’ into YAML. If the collection is empty, the result
is the empty string. Otherwise, the YAML rendition is
appended with a newline character.

52/60

 ‘{{ fm | to_html | safe }}’ renders the collection (map)
“fm.fm_*’ into HTML. The ‘to_html’ must be followed by a ‘safe’
filter to pass through the HTML formatting of objects and ar-
rays.

* ‘{{ doc.body | get lang }} determines the natural languages of
the text in the variable ‘{{ doc.body }} and returns the result
as an array of ISO 639-1 language codes. The template fil-
ter’{{ get lang }}’ can be configured with the configuration file
variable ‘tmpl.filter.get lang’. The latter defines those ISO
639-1 codes, the detection algorithm considers as potential
language candidates. Keep this list as small as possible, be-
cause language detection is computationally expensive. A long
candidate list may slow down the note file creation workflow.
The detected languages are listed as 'value::Array’ in the or-
der of their statistic frequency. If the detection algorithm can
not detect any of the configured language candidates, the filter
‘{{ get lang }}’ returns an empty array.

* ‘{{ doc.body | get lang | map lang }}’: The ‘map lang’ filter ex-
tends the detected ISO 638-1 language codes to complete IETF
BCP 47 language tags, usually containing a region subtag. For
example the input ‘en’ results in ‘en-US’. This additional map-
ping is useful because the detection algorithm can not determ-
ine the region automatically. The mapping can be configured
by adjusting the configuration file variable
‘“tmpl.filter.map_lang’. If a language is not listed in the
‘“tmpl.filter.map_lang’ filter configuration, the input is passed
through, e.g. ‘fr’ results in ‘fr’.

* ‘{{ doc.body | get lang | map lang(default=lang) }} adds an
extra mapping to the ‘map lang’ filter: when the input of the
‘map_lang’ filter is an empty Value::Array, then ‘{{ lang }}’ is ad-
ded as single item. ‘{{ lang }}’ is expected to be an ISO 638-1
language code, e.g. ‘en’. Depending on the
‘“tmpl.filter.map lang’ configuration, the exemplary ‘en’ input
may be converted to ‘en-US’ or ‘en-GB’.

* ‘{{ doc.body | get lang | ... | flatten array | to _yaml }}’: Ar-
rays are usually printed with ‘to yaml’ as item lists. When a list
contains exactly one item, the filter ‘flatten array’ flattens that
list. This way the single item is printed as such and not as a list
with only one item. Lists with two or more items are not
flattened. They are passed through without modification.

* ‘{{ doc.body | get lang | ... | first | to yaml }}’ returns the
language with the biggest word count frequency as
‘Value: :String’.

53/60

* {{ doc_file date | default(value=now()) |
date(format='%Y%m%d') }} Returns the formatted date of the file
‘{{ path }}’ points to. Defaults to the current date in cases
‘{{ doc_file date }}’ is not defined (see Template variables sec-
tion).

10.4 Content template conventions

Tp-Note distinguishes two template types: content templates are
used to create the note’s content (front-matter and body) and the
corresponding filename templates “tmpl.* filename’ are used to
calculate the note’s filename. By convention, content templates
appear in the configuration file in variables named

“tmpl.* content’.

Strings in the front matter section of content templates are YAML
encoded. Therefore, all variables used in the front-matter must
pass an additional ‘to yaml()’-filter. For example, the variable

‘{{ dir path | file stem() }}’ becomes ‘{{ dir path | file stem()
| to_yaml(key='title') }}’ or, shorter: ‘{{ dir path | file stem |
to yaml(key='title') }}.

When given with a key, the ‘to_yaml(key='...")’ filter accepts any
input type, whereas the short form ‘to yaml()’ requires an
‘Value::0bject’ type as input. The latter is often followed be the
‘append (newline=true)’ filter appending a newline.

10.5 Filename template conventions

By convention, filename templates appear in the configuration file
in variables named ‘tmpl.* filename’. When a content template
creates a new note, the corresponding filename template is called
afterwards to calculate the filename of the new note. Please note
that, the filename template ‘tmpl.sync_filename’ has a special role
as it synchronizes the filename of existing note files. Besides this,
as we are dealing with filenames we must guarantee, that the file-
name templates produce only file system friendly characters. For
this purpose Tp-Note provides the additional Tera filter ‘sanit’:

The ‘sanit()’ filter transforms a string in a file system friendly
form. This is done by replacing forbidden characters like ‘?” and “\
\’ with “ ’ or space. This filter can be used with any variable, but is
most useful with filename templates. For example, in the
‘“tmpl.sync_filename’ template, we find the expression ‘{{ subtitle

| sanit }}’. Note that the filter recognizes strings that represent a
so-called dot file name and treats them a little differently by pre-
pending them with an apostrophe: a dot file is a file whose name
starts with ‘.” and that does not contain whitespace. It may or may
not end with a file extension. The apostrophe preserves the
following dot from being filtered.

54/60

The ‘prepend(with sort tag=<...>’ filter is similar to the
‘prepend (with=<...>’ filter, with two exceptions:

1. If “filename.sort_tag.separator’ is defined (by default *-’), it is
automatically inserted between the sort-tag and the input
string.

2. In some cases an additional separator
‘filename.sort tag.extra separator’ (by default
serted as well.

0y

) may be in-

Both separators guarantee that the end of a sort-tag is detected
unequivocally. For example, when the input string starts with a
digit ‘0123456789’ or ‘- ’, the string is prepended with -', e.g.
‘1-The Show Begins’ becomes “'1-The Show Begins’. The
‘prepend(with _sort tag=<...>)’ filter must be applied to the first
variable, e.g. ‘{{ fm.fm_title | sanit |

prepend(with separator=path|file sort tag)}’. This way, it is al-
ways possible to univocally distinguish the sort-tag from the rest
of the filename. Note, the default sort-tag separators can be
changed with the configuration variables

‘filename.sort tag.separator’ and

‘filename.sort tag.extra separator’. For more details please
consult the Customize the filename synchronization scheme
chapter.

In filename templates most variables must pass the ‘sanit’ filter.
Exception to this rule are sort-tag expressions like ‘{{ path |

file sort tag }} and ‘{{ dir path | file sort tag }}’. As the latter
are guaranteed to contain only the file system friendly characters
‘0123456789 - ’, no additional filtering is required. Please note, that
in this case a ‘sanit’-filter would needlessly restrict the value
range of sort-tags because they may contain characters, which the
‘sanit’-filter screens out when they appear in leading or trailing
position. For this reason one must not use the ‘sanit’-filter togeth-
er with ‘{{ path | file sort tag }} or ‘{{ dir path |

file sort tag }}'.

11 SECURITY AND PRIVACY
CONSIDERATIONS

As discussed above, Tp-Note’s built-in viewer sets up an HTTP
server on the ‘“localhost’ interface with a random port number.

For security reasons, Tp-Note limits the set of files the viewer is
able to publish. To summarize, a file is only served:

1. When it is referenced in one of the currently viewed Tp-Note
files,

2. when its file extension is registered with the
‘viewer.served mime type’ list,

55/60

3. if the number of so far viewed Tp-Note files,
‘viewer.displayed tpnote count max’ is not exceeded,

4. when it’s located under a directory containing a marker file
named ‘tpnote.toml’ (without marker file this condition is void).

The HTTP server runs as long as the launched web browser win-
dow is open. Note, that the server not only exposes the displayed
note file, but also all referenced inline images and other linked Tp-
Note files. Internally, the viewer maintains a list of referenced loc-
al URLs. For security reasons, only listed files are served. To limit
data exfiltration in case an attacker gains access to an account on
your machine, the number of served Tp-Note files is limited by the
configurable value ‘viewer.displayed tpnote count max’.

In addition to the above quantitative restriction, Tp-Note’s built-in
viewer serves only files whose file extensions are registered with
the ‘viewer.served mime type’ configuration file variable. The latter
allows disabling the follow links to other Tp-Note files feature by
removing all ‘text/*’ mime types from that list.

Another security feature is the ‘tpnote.toml’ marker file. When Tp-
Note opens a note file, it checks all directories above, one by one,
until it finds the marker file “tpnote.toml’. Tp-Note’s viewer will
never serve a file located outside the root directory and its
children. When no ‘tpnote.toml’ file is found, the root directory is
set to ‘/’, which disables this security feature.

As Tp-Note’s built-in viewer binds to the “localhost’ interface, the
exposed files are in principle accessible to all processes running
on the computer. As long as only one user is logged into the com-
puter at a given time, no privacy concern is raised: any potential
attacker must be logged in, in order to access the localhost HTTP
server.

This is why on systems where multiple users are logged in at the
same time, it is recommended to disable Tp-Note’s internal HTTP
server by setting the configuration file variable

‘arg_default.edit = true’. Alternatively, you can also compile Tp-
Note without the ‘viewer’ feature. Note, that even if the viewer
feature is disabled, the ‘- -export’ command line option still works:
This allows the authorized user to render the note to HTML manu-
ally.

Summary: As long as Tp-Note’s built-in note viewer is running,
the note file and all its referenced (image) files are exposed to all
users logged into the computer at that given time. This concerns
only local users, Tp-Note never exposes any information to the
network or on the Internet.

12 ENVIRONMENT VARIABLES

LANG

56/60

Tp-Note stores the user’s locale settings - originating from
the environment variable ‘LANG’ (or the Windows registry) - in
the template variable ‘{{ lang }}’. When the environment
variable ‘TPNOTE _LANG’ is set, it overwrites the locale setting
stored in ‘{{ lang }}’. ‘man locale’ describes the data format
of ‘LANG’, a typical value is ‘en_GB.UTF-8’.

TPNOTE_CONFIG

When set, the environment variable replaces the default
path where Tp-Note loads or stores its configuration file. It
has the same effect as the command line option “--config’. If
both are present, that latter takes precedence.

TPNOTE _LANG

Tp-Note stores the user’s locale settings - originating from
the environment variable ‘LANG’ (or the Windows registry) - in
the template variable ‘{{ lang }}’. When the environment
variable ‘TPNOTE LANG’ is set, it overwrites the locale setting
stored in ‘{{ lang }}’. Unlike ‘LANG’, the environment variable
‘TPNOTE_LANG’ is encoded as IETF BCP 47 language tag,

e.g. ‘en-US’.

TPNOTE LANG DETECTION

If set, this variable overwrites the configuration file variables
‘tmpl.filter.get lang’ and ‘tmpl.filter.map lang’, thus
selecting potential language candidates for Tp-Note’s natur-
al language detection. The string contains a comma and
space separated list of ISO 63901 codes, e.g. ‘fr’ or IETF
BCP 47 tags, e.g. ‘fr-FR’. Here is an example of a complete
string: ‘de-DE, en, fr-FR, hu’. The user’s default locale

‘{{ lang }}’ is automatically added to the list. Note, that the
language detection algorithm determines only the language
subtag, e.g. ‘en’. The region subtag will be added as indic-
ated in your configuration. Subsequent entries that differ
only in the region subtag, e.g. ‘en-GB, en-US’ are ignored.

The empty string disables the automatic language detection.
TPNOTE LANG DETECTION="" tpnote

For debugging observe the value of ‘SETTINGS’ in the debug
log:

TPNOTE LANG DETECTION="de-DE, en, fr-FR" tpnote -d trace -b
TPNOTE BROWSER

If set, this variable takes precedence over the configuration
file variable ‘app args.browser’. While the latter is a list de-
scribing how to invoke various web browsers,

57/60

‘TPNOTE_BROWSER’ contains a string invoking one particular
browser, exactly as one would do in a shell: the whitespace
separated tokens list contains: the path name of the applica-
tion, and all its flags and options. For example:

TPNOTE BROWSER="chromium --new-window --incognito" tpnote

The above instructs Tp-Note to start the web browser
‘chromium’ with the flags ‘- -new-window’ and ‘--incognito’. Un-
like in a shell, the backslash and quote characters have no
special meaning. Instead, all tokens are percent encoded,
e.g. ‘my path’ becomes ‘my%20path’.

The empty string disables the launch of the browser the
same way as ‘--edit’:

TPNOTE BROWSER="" tpnote
is equivalent to:
tpnote --edit

TPNOTE EDITOR

If set, and you are working on a graphical desktop, this vari-
able takes precedence over the configuration file variable
‘app_args.editor’. While the latter is a list describing how to
invoke various file editors, ‘TPNOTE_EDITOR’ contains a string
invoking one particular file editor, exactly as one would do
on a shell: the whitespace separated tokens list contains: the
path name of the application, and all its flags and options.
For example:

TPNOTE _EDITOR="geany -sim" tpnote

The above instructs Tp-Note to start the editor ‘geany’ with
the flags “-sim’. Unlike with shell tokens, the backslash and
quote characters have no special meaning. Instead, all
tokens are percent encoded. Consider the following example
where the space character is expressed as %20’:

TPNOTE EDITOR="geany -sim -c ~/my%20config/" tpnote

The empty string disables the launch of the editor the same
way as the command line option ‘- -view’ does:

TPNOTE _EDITOR="" tpnote
is equivalent to:
tpnote --view

TPNOTE EDITOR CONSOLE

58/60

If set, and you are working on a virtual console, this variable
takes precedence over the configuration file variable
‘app_args.editor console’, which defines the command line
parameters for invoking a terminal based text editor, such as
Emacs, Vim or Helix. Otherwise, the syntax and the
operation are the same as with ‘TPNOTE EDITOR’ hereinabove.
For example:

sudo TPNOTE_EDITOR CONSOLE="nvim" tpnote
TPNOTE EXTENSION DEFAULT

If set, this variable takes precedence over the configuration
file variable ‘filename.extension default’, which defines the
file extension of new note files. In order to activate the ap-
propriate markup renderer make sure, that the value given
here is listed in ‘filename.extensions’.

For example, to create a new reStructuredText note file
type:

TPNOTE_EXTENSION DEFAULT=rst" tpnote

Common values are: ‘md’ (default, Markdown), ‘txt’ (Mark-
down), ‘rst’ (reStructuredText) and “txtnote’ (text with hy-
perlinks).

TPNOTE SCHEME

If set, this variable takes precedence over the configuration
file variable ‘arg default.scheme’, which defines the scheme
used when creating new note file.

TPNOTE USER, LOGNAME, USER, USERNAME

The template variable ‘{{ username }}’ is the content of the
first non-empty environment variable: ‘TPNOTE_USER’, ‘LOGNAME’,
‘USER’ or ‘USERNAME’.

13 EXIT STATUS

The exit status is ‘0 when the note file was processed without
error or ‘1’ otherwise. If Tp-Note can not read or write its config-
uration file, the exit status is ‘5’.

When ‘tpnote -n -b <FILE>' returns the code ‘0’, the note file has a
valid YAML header with a ‘title:’ field. In addition, when “tpnote
-n -b -x - <FILE>' returns the code ‘0’, the note’s body was
rendered without error.

59/60

14 RESOURCES
Tp-Note is hosted on:
* Gitlab: https://gitlab.com/getreu/tp-note.
* Github (mirror): https://github.com/getreu/tp-note and on

15 COPYING
Copyright © 2016-2025 Jens Getreu

Licensed under either of

» Apache Licence, Version 2.0 http://www.apache.org/licenses/
LICENSE-2

» MIT licence http://opensource.org/licenses/MIT

at your option.

15.1 Contribution

By contributing to this project, you agree to transfer the copyright
ownership of your contribution to Jens Getreu.

16 AUTHORS
Jens Getreu getreu@web.de

1. The variables ‘{{ fm.fm title }}’ and ‘{{ fm.fm subtitle }}’ re-
flect the values in the note’s front matter.«

60/60

https://gitlab.com/getreu/tp-note
https://github.com/getreu/tp-note
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://opensource.org/licenses/MIT
mailto:getreu@web.de

	TP-NOTE(1) Version 1.25.17 | Tp-Note documentation
	1 NAME
	2 SYNOPSIS
	3 DESCRIPTION
	4 CREATING NOTE FILES
	4.1 Create a new note with empty clipboard
	4.2 Create a new note based on clipboard data
	4.2.1 The clipboard contains some text
	4.2.2 The clipboard contains a heading
	4.2.3 The clipboard contains a hyperlink
	4.2.4 The clipboard contains a YAML header

	4.3 Create a new note annotating some non Tp-Note file
	4.4 Convert a text file into a Tp-Note file
	4.5 Use Tp-Note in shell scripts

	5 NOTE FILE MANIPULATION
	5.1 Editing notes
	5.2 Viewing notes
	5.3 Automatic filename synchronization before and after editing
	5.4 Printing note files
	5.5 Use Tp-Note in shell scripts

	6 OPTIONS
	7 THE NOTE’S DOCUMENT STRUCTURE
	7.1 The document’s header and body
	7.2 Links to resources and other documents
	7.2.1 Link types
	7.2.2 Local links in HTML export
	7.2.3 Local links with format strings

	8 METADATA FILENAME SYNCHRONIZATION
	8.1 Filename synchronization schemes

	9 CUSTOMIZATION
	9.1 Register your own text editor
	9.2 Change the file extension for new note files
	9.3 Configure the natural language detection algorithm
	9.4 Localize the note’s front matter
	9.5 Change the default markup language
	9.5.1 Change the default markup language to ReStructuredText

	9.6 Change the sort tag character set
	9.7 Customize the filename synchronization scheme
	9.8 Store new note files by default in a subdirectory
	9.9 Customize the built-in note viewer
	9.9.1 Change the way how note files are rendered for viewing
	9.9.2 Delay the launch of the web browser
	9.9.3 Change the HTML rendition template
	9.9.4 Customize the built-in HTML exporter

	9.10 Choose your favourite web browser as note viewer

	10 TEMPLATES
	10.1 Template types
	10.2 Template variables
	10.3 Template filters
	10.4 Content template conventions
	10.5 Filename template conventions

	11 SECURITY AND PRIVACY CONSIDERATIONS
	12 ENVIRONMENT VARIABLES
	13 EXIT STATUS
	14 RESOURCES
	15 COPYING
	15.1 Contribution

	16 AUTHORS

