
TP-NOTE(1) Version 1.24.8 | Tp-Note
documentation

Unix manpage

Jens Getreu

2024-08-24

1 NAME

Tp-Note: Markup enhanced granular note-taking

Save and edit your clipboard content as a note file.

2 SYNOPSIS

3 DESCRIPTION

Tp-Note is a note-taking tool and a template system, that synchronizes
the note’s metadata with its filename. Tp-Note analyses its environ‐
ment and the clipboard content and stores the result in variables. New
notes are created by filling these variables in predefined and customiz‐
able Tera-templates. In case the first positional parameter ‘<FILE>’
points to an existing Tp-Note file, the note’s metadata is parsed and, if
necessary, its filename is adjusted. For all other file types, Tp-Note cre‐
ates a new note in the same directory annotating the file. If the posi‐
tional parameter ‘<DIR>’ points to an existing directory (or, when omit‐
ted, the current working directory), a new note is created in that dir‐
ectory. After creation, Tp-Note launches the systems file editor. Al‐
though the configurable default templates are written for Markdown,
Tp-Note is not tied to any specific markup language. However, Tp-Note

tpnote [-a] [-b] [-c <FILE>] [-C <FILE>] [-d <LEVEL>] [-e]
 [-l <LANG>] [-p <NUM>] [-n] [-t] [-u] [-v] [-V]
 [-x <DIR>|''|'-']
 [<DIR>|<FILE>]

1/64

comes with an optional viewer feature, that currently renders only
Markdown, ReStructuredText and HTML input. In addition, there is
some limited support for Asciidoc and WikiText. Finally, the note’s
rendition is live updated and displayed in the user’s web browser.

After the user finished editing, Tp-Note analyses potential changes in
the notes metadata and renames, if necessary, the file, so that its
metadata and filename are in sync again. Finally, the resulting path is
printed to ‘stdout’, log and error messages are dumped to ‘stderr’.

This document is Tp-Note’s technical reference. More information can
be found in Tp-Note’s user manual and at Tp-Note’s project page.

4 CREATING NOTE FILES

Tp-Note operates in 5 different modes, depending on its command line
arguments and the clipboard state. Each mode is associated with one
content template and one filename template.

4.1 Create a new note with empty clipboard

In case the clipboard is empty while starting, the new note is created
with the templates: ‘tmpl.from_dir_content’ and
‘tmpl.from_dir_filename’. By default, the new note’s title is the parent’s
directory name. The newly created file is then opened with an external
text editor, allowing it to change the proposed title and add other con‐
tent. When the text editor closes, Tp-Note synchronizes the note’s
metadata and its filename. This operation is performed with the
‘tmpl.sync_filename’ template.

Example: the clipboard is empty and ‘<path>’ is a directory (or empty):

or

creates the document:

with the content:

tpnote "./03-Favorite Readings/"

cd "./03-Favorite Readings"
tpnote

./03-Favorite Readings/20211031-Favorite Readings--Note.md

2/64

https://blog.getreu.net/projects/tp-note/tpnote--manual.html
https://blog.getreu.net/projects/tp-note/

4.2 Create a new note based on clipboard data

When ‘<path>’ is a directory and the clipboard is not empty, the clip‐
board’s content is stored in the variables ‘{{ txt_clipboard }}’ and
‘{{ html_clipboard }}’. The latter contains the HTML rich text version
of the clipboard content. In addition, if the content contains a hyper‐
link, the first hyperlink’s name can be accessed with ‘{{ txt_clipboard
| link_text }}’, its URL with ‘{{ txt_clipboard | link_dest }}’ and its
title with ‘{{ txt_clipboard | link_title }}’. The new note is then cre‐
ated with the ‘tmpl.from_clipboard_content’ and the
‘tmpl.from_clipboard_filename’ templates. Finally, the newly created
note file is opened again with some external text editor. When the user
closes the text editor, Tp-Note synchronizes the note’s metadata and its
filename with the template ‘tmpl.sync_filename’.

Note: this operation mode also empties the clipboard (configurable fea‐
ture).

HTML to Markdown conversion

In case the clipboard stream contains HTML, the internal filter

converts the stream into Markdown before being processed. If the con‐
version fails or results in an empty string, the fallback value is
‘{{ txt_clipboard }}’

Clipboard simulation

When no mouse and clipboard is available, the clipboard feature can
be simulated by feeding the clipboard data into stdin.

title: Favorite Readings
subtitle: Note
author: Getreu
date: 2021-10-31
lang: en-GB

{{ html_clipboard | html_to_markup(
 extension=extension_default,
 default=txt_clipboard)
}}

echo "[The Rust Book](<https://doc.rust-lang.org/book/>)" | tpnote

3/64

Tp-Note behaves here as if the clipboard contained the string: “[The
Rust Book](<https://doc.rust-lang.org/book/>)”.

When you pipe HTML into Tp-Note, make sure that the stream starts
with either ‘<!DOCTYPE html’ or ‘<html’, e.g.:

4.2.1 The clipboard contains a string

Example: While launching Tp-Note the clipboard contains the string:
“Who Moved My Cheese?\n\nChapter 2” and ‘<path>’ is a directory.

Or:

This creates the document:

with the content:

We see from the above example, how the
‘tmpl.from_clipboard_content’ content template extracts the first line of
the clipboards content and inserts it into the header’s ‘title:’ field.
Then, it copies the entire clipboard content into the body of the docu‐
ment. However, if desired or necessary, it is possible to modify all tem‐
plates in Tp-Note’s configuration file. Note, that not only the note’s con‐
tent is created with a template, but also its filename: The
‘tmpl.from_clipboard_filename’ filename template concatenates the
current date, the note’s title and subtitle.

echo '<!DOCTYPE html><h1>Hello World</h1>'| tpnote

tpnote "./03-Favorite Readings/"

cd "./03-Favorite Readings/"
tpnote

./03-Favorite Readings/20211031-Who Moved My Cheese--Note.md

title: Who Moved My Cheese
subtitle: Note
author: Getreu
date: 2021-10-31
lang: en-GB

Who Moved My Cheese?

Chapter 2

4/64

4.2.2 The clipboard contains a hyperlink

Example: ‘<path>’ is a directory, the clipboard is not empty and it con‐
tains the string: ‘I recommend:\n[The Rust Book](https://doc.rust-
lang.org/book/)’.

Tp-Note’s templates ‘tmpl.from_clipboard_content’ and
‘tmpl.from_clipboard_filename’ create the following document:

When analysing the clipboard’s content, Tp-Note searches for hyper‐
links in Markdown, ReStructuredText, Asciidoc and HTML format.
When successful, the content template uses the link text of the first hy‐
perlink found as document title.

4.2.3 The clipboard contains a string with a YAML header

Example: ‘<path>’ is a directory, the clipboard is not empty and con‐
tains the string: ‘---\ntitle: Todo\nfile_ext: mdtxt\n---\nnothing’.

This creates the note: ‘20230915-Todo.mdtxt’ with the following content:

tpnote './doc/Lecture 1'

./doc/Lecture 1/20211031-The Rust Book--Notes.md

title: The Rust Book
subtitle: URL
author: Getreu
date: 2021-10-31
lang: en-GB

I recommend:
[The Rust Book](<https://doc.rust-lang.org/book/>)

tpnote

title: Todo
subtitle: Note
author: Getreu
date: 2023-09-15
lang: fr-FR

file_ext: mdtxt

5/64

Technically, the creation of the new note is performed using the YAML
header variables: ‘{{ fm.fm_title }}’, ‘{{ fm.fm_subtitle }}’,
‘{{ fm.fm_author }}’, ‘{{ fm.fm_date }}’, ‘{{ fm.fm_lang }}’,
‘{{ fm.fm_sort_tag }}’ and ‘{{ fm.fm_file_ext }}’ which are evaluated
with the ‘tmpl.from_clipboard_yaml_content’ and the
‘tmpl.from_clipboard_yaml_filename’ templates.

Note, that the same result can also be achieved without clipboard input
by typing in a terminal:

Furthermore, this operation mode is very handy with pipes in general,
as shows the following example: it downloads some webpage, converts
it to Markdown and copies the result into a Tp-Note file. The procedure
preserves the webpage’s title in the note’s title:

creates the note file ‘20230919-Jens Getreu's blog--Note.md’ with the
webpage’s content converted to Markdown:

nothing

echo -e "---\ntitle: Todo\nfile_ext: mdtxt\n---\n\nnothing" |
tpnote

curl 'https://blog.getreu.net' \
| pandoc --standalone -f html -t

markdown_strict+yaml_metadata_block \
| tpnote

title: Jens Getreu's blog
subtitle: Note
author: Getreu
date: 2023-09-15
lang: en

viewport: width=device-width, initial-scale=1.0, maximum-scale=1

Jens Getreu's blog

- [Home](https://blog.getreu.net)
- [Categories](https://blog.getreu.net/categories)

6/64

4.3 Create a new note annotating a non Tp-Note file

When ‘<path>’ points to an existing file, whose file extension is other
than ‘.md’, a new note is created with a similar filename and a refer‐
ence to the original file is copied into the new note’s body. If the clip‐
board contains some text, it is appended there also. The logic of this is
implemented in the templates: ‘tmpl.annotate_file_content’ and
‘tmpl.annotate_file_filename’. Once the file is created, it is opened
with an external text editor. After editing the file, it will be - if neces‐
sary - renamed to be in sync with the note’s metadata.

Example:

creates the note:

with the content:

The configuration file variable ‘filename.extensions’ list all the file ex‐
tensions that Tp-Note recognizes as own file types. Only foreign file
types can be annotated.

Note that the file annotation mode also reads the clipboard’s content:
when it is not empty, its data is appended to the new note’s body.

4.4 Convert a text file into a Tp-Note file

Consider the content of the following text file ‘Ascii-Hangman--A game
for children.md’ whose creation date is 13 March 2022:

:> "Classic Shell Scripting.pdf"

tpnote "Classic Shell Scripting.pdf"

Classic Shell Scripting.pdf--Note.md"

title: Classic Shell Scripting.pdf
subtitle: Note
author: Getreu
date: 2023-09-15
lang: en-US

[Classic Shell Scripting.pdf](<Classic Shell Scripting.pdf>)

7/64

To convert the text file into a Tp-Note file type:

NB: the ‘--add-header’ flag is actually not necessary, as it is enabled by
default through the configuration file variable
‘arg_default.add_header = true’.

As a result of the above command, Tp-Note converts the filename into:

and prepends a YAML header to the file’s content:

4.5 Use Tp-Note in shell scripts

Use case: download a webpage and store it as Tp-Note file

Using the method displayed above you can save time and create a
script with:

Insert the following content:

A little game designed for primary kids to revise vocabulary in
classroom.

tpnote --add-header --batch "Ascii-Hangman--A game for
children.md"

20220313-Ascii-Hangman--A game for children.md

title: Ascii-Hangman
subtitle: A game for children
author: Getreu
date: 2022-03-13
lang: en-US

orig_name: Ascii-Hangman--A game for children.md

A little game designed for primary kids to revise vocabulary in
classroom.

•

sudo nano /usr/local/bin/download

#!/bin/sh
curl "$1" | tpnote

8/64

Instead of Tp-Note’s internal HTML to Markdown converter, you
can alternatively use the external ‘pandoc’ converter. This method
offers the advantage to also convert the HTML page’s metadata.
Currently, Tp-Note’s internal converter lacks this feature.

Do not forget to make it runnable:

To execute the script type:

5 NOTE FILE MANIPULATION

5.1 Editing notes

Unless invoked with ‘--batch’ or ‘--view’, Tp-Note launches an external
text editor after creating a new note. This also happens when ‘<path>’
points to an existing ‘.md’-file.

Example: edit the note from the previous example:

5.2 Viewing notes

Once Tp-Note has launched the user’s file editor, it opens the note file,
renders its content to HTML, launches the user’s web browser and con‐
nects it to Tp-Note’s internal web server. Then, Tp-Note watches the
note file and re-renders the viewed HTML when the content changes.
The note’s file extension determines which internal renderer is activ‐
ated.

#!/bin/sh
curl "$1" | pandoc --standalone -f html -t

markdown_strict+yaml_metadata_block | tpnote

sudo chmod a+x /usr/local/bin/download

download 'https://blog.getreu.net'

cd "./03-Favorite Readings"
tpnote 20211031-Favorite Readings--Note.md

9/64

Tp-Note’s note built-in viewer comprises three markup language
renders:

‘Markdown’_ (file extension .md)
This renderer is CommonMark compatible and feature complete. It
understands, heading attributes, inline images, tables, task lists,
footnotes, strike-through and LaTeX formula:

Or:

Inline formulas are enclosed between Dollar characters, e.g. ‘$
\alpha$’ becomes ‘α’.

Source code is highlighted when you annotate the programming
language (see also ‘tmpl_html.viewer_highlighting_theme’ and
‘tmpl_html.exporter_highlighting_theme’):

Heading attributes:

is interpreted as a level 1 heading with the content text, ID ‘id’,
classes ‘class1’ and ‘class2’ and custom attributes ‘myattr’ (without
value) and ‘other_attr’ with value ‘myvalue’. Note that ID, classes,
and custom attributes should be space-separated.

‘ReStructuredText’ (file extension .rst)
This renderer is experimental and covers only basic markup.

•

```math
x^n + y^n = z^n
```

$$
x^n + y^n = z^n
$$

```rust
pub fn main(){

let w = "world!";
println!("Hallo {:?}", w);

}
```

text { #id .class1 .class2 myattr other_attr=myvalue }

•

10/64

‘PlainText’ (link only renderer, file extension .txtnote)
The purpose of this renderer is to make hyperlinks written in
Markdown, ReStructuredText, Asciidoc, HTML, Wikitext syntax
clickable. Only hyperlinks are rendered, all other text is shown ver‐
batim.

Tp-Note’s webserver streams large media files without loading them
into memory. Just refer to the media file as local link: ‘[my video](<dir/
my video.mp4>)’. Make sure, that the file extension of the video file is re‐
gistered with ‘viewer.served_mime_types’.

5.3 Automatic filename synchronization before and after
editing

Before launching the text editor and after closing it, Tp-Note synchron‐
izes the filename with the note’s metadata. When the user changes the
metadata of a note, Tp-Note will replicate that change in the note’s file‐
name. As a result, all your note’s filenames always correspond to their
metadata, which helps to retrieve your notes in large data pools.

Example:

The way how Tp-Note synchronizes the note’s metadata and filename
is defined in the template ‘tmpl.sync_filename’.

Once Tp-Note opens the file in your text editor, let’s assume you decide
to change the title in the note’s YAML metadata section from ‘title:
Favorite Readings’ to ‘title: Introduction to bookkeeping’. After clos‐
ing the text editor, Tp-Note updates the filename automatically:

Note: the sort tag ‘20200306’ has not changed. The filename synchroniz‐
ation mechanism by default never does. (See below for more details
about filename synchronization).

5.4 Printing note files

Tp-Note renders note files to HTML. The latter is either shown in the
browser or can be exported with ‘--export’. When exporting to HTML,
hyperlinks are passed through an internal link rewriting engine that

•

tpnote "20200306-Favorite Readings--Note.md"

20200306-Introduction to bookkeeping--Note.md

11/64

can be parametrized with ‘--export-link-rewriting’. The easiest way to
print the resulting HTML, is to pipe it through an HTML to PDF con‐
verter, e.g. weasyprint or wkhtmktopdf.

I prefer weasyprint over wkhtmltopdf because the latter is not main‐
tained any more. Furthermore, weasyprint supports the CSS Paged Me‐
dia standard allowing to include page layout directives into HTML. You
can change the default page layout by modifying the HTML template
with the ‘tmpl_html.exporter_doc_css’ configuration file variable.

5.5 Use Tp-Note in shell scripts

Use case: synchronize recursively filenames and metadata

The following synchronizes bidirectionally all filenames with the
note’s YAML header data.

The direction of the synchronization depends on whether the ‘.md’
file has a valid YAML header or not:

A YAML header is present and valid: the header fields might up‐
date the filename (see template ‘tmpl.sync_filename’). A possible
sort-tag at the beginning of the filename remains untouched.

No YAML header: a new header is prepended (see template
‘from_text_file_content’) and the filename might change
slightly (see template ‘from_text_file_filename’). A possible
sort-tag at the beginning of the filename remains untouched. If
the filename does not start with a sort tag, the file’s creation
date is prepended.

6 OPTIONS

-a, --add-header

Prepends a YAML header in case the text file does not have one.
The default template, deduces the ‘title:’ and ‘subtitle:’ header
field from the filename. It’s sort-tag and file extension remain un‐
touched. In case the filename is lacking a sort-tag, the file cre‐

tpnote --export=- mynote.md | weasyprint - mynote.md.pdf

•

TPNOTE_USER="John" find . -type f -name '*.md' -exec tpnote -a
-b {} > /dev/null \;

◦

◦

12/64

https://www.w3.org/TR/css-page-3/
https://www.w3.org/TR/css-page-3/

ation date in numerical format is prepended. As this option is ac‐
tivated by default, it has no effect unless you set
‘arg_default.add_header = false’ in the configuration file.

-b, --batch

Do not launch the external text editor or viewer. All other opera‐
tions are available and are executed in the same way. In batch
mode, error messages are dumped on the console only and no
alert windows pop up.

Tp-Note ignores the clipboard when run in batch mode with ‘--
batch’. Instead, if available, it reads the stdin stream as if the
data came from the clipboard.

-c FILE, --config=FILE

Loads an additional configuration from the TOML formatted
FILE and merges it into the default configuration.

-C FILE, --config-defaults=FILE

Dumps the internal default configuration in TOML format into
FILE or stdout if FILE equals to ‘-’, e.g. ‘tpnote -C - | less’.

-d LEVEL, --debug=LEVEL

Prints additional log messages. The debug level LEVEL must be
one out of ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’ (default) or ‘off’.
The level ‘trace’ reports the most detailed information, while
‘error’ informs you only about failures. A ‘warn’ level message
means, that not all functionality might be available or work as
expected.

Use ‘-b -d trace’ for debugging templates and ‘-V -b -d trace’
for debugging configuration files. If the HTTP server (viewer)
does not work as expected: ‘-n -d debug’. If your text editor does
not open as expected: ‘-n -d info --edit’. Or, to observe the
launch of the web browser: ‘-n -d info --view’. The option ‘-d
trace’ shows all available template variables, the templates used
and the rendered result of the substitution. This is particularly
useful for debugging new templates. The option ‘-d off’ silences
all error message reporting and also suppresses the error pop-up
windows.

13/64

Note, under Linux, when -d trace is given, no pop-up messages
appear. Instead, the logs are dumped to the console from where
you started Tp-Note.

All error messages are dumped in the error stream stderr and
appear on the console from where Tp-Note was launched:

Under Windows the output must be redirected into a file to see it:

Alternatively, you can redirect all log file entries into popup alert
windows.

The same can be achieved by setting following configuration file
variables (especially useful with Windows):

The value for ‘arg_default.debug’ must be one out of ‘trace’,
‘debug’, ‘info’, ‘warn’, ‘error’ (default) and ‘off’. They have the
same meaning as the corresponding command line options.

-e, --edit

Edit only mode: opens the external text editor, but not the file
viewer. This disables Tp-Note’s internal file watcher and web
server, unless ‘-v’ is given. Alternatively you can set the environ‐
ment variable ‘TPNOTE_BROWSER=""’ to the empty string. Another
way to permanently disable the web server is to set the configur‐
ation variable ‘arg_default.edit=true’. When ‘--edit --view’ ap‐
pear together, both the editor and the viewer will open and the
arg_default.edit variable is ignored.

-l LANGUAGE_TAG, --force-lang=LANGUAGE_TAG

Disables the automatic language detection while creating a new
note file and use LANGUAGE_TAG instead. LANGUAGE_TAG is
formatted as IETF BCP 47 language tag, e.g. ‘en-US’. If LAN‐
GUAGE_TAG equals ‘`', the environment variable 'TP‐

 tpnote.exe --debug info my_note.md

 tpnote.exe --debug info my_note.md >debug.md 2>&1

 tpnote.exe --popup --debug info my_note.md

 [arg_default]
 debug = 'info'
 popup = true

14/64

NOTE_LANG`’ determines the language instead; or, if the latter is
not defined, the user’s default language, as reported from the op‐
erating system’s locale setting, is decisive.

-p PORT, --port=PORT

Sets the server port that the web browser connects to, to the spe‐
cified value PORT. If not given, a random available port is chosen
automatically.

-n, --no-filename-sync

Whenever Tp-Note opens a note file, it synchronizes its YAML-
metadata with its filename. ‘--no-filename-sync’ disables this
synchronization. In addition, in scripts this flag can be especially
useful for validating the syntax of ‘.md’-files. See section EXIT
STATUS for more details. The section METADATA FILENAME SYN‐
CHRONIZATION shows alternative ways to disable synchroniza‐
tion.

-s PORT, --scheme=SCHEME_NAME

Sets the filename scheme for creating a new note file. This over‐
writes the ‘arg_default.scheme’ value in the configuration file.
Under ‘[[scheme]]’ follows the definition of the schemes. The de‐
fault configuration ships two schemes with the SCHEME_NAMES
‘default’ and ‘zettel’ (for Zettelkasten).

-t, --tty

Tp-Note tries different heuristics to detect whether a graphic en‐
vironment is available or not. For example, under Linux, the
‘DISPLAY’ environment variable is evaluated. The ‘--tty’ flag dis‐
ables the automatic detection and sets Tp-Note into “console
only” mode: now only the non GUI editor (see configuration vari‐
able: ‘app_args.editor_console’) and no viewer is launched.

-u, --popup

Redirects log file entries into popup alert windows. Must be used
together with the --debug option to have an effect. Note, that de‐
bug level ‘error’ conditions will always trigger popup messages,
regardless of --popup and --debug (unless ‘--debug off’). Popup
alert windows are queued and will never interrupt Tp-Note. To
better associate a particular action with its log events, read
through all upcoming popup alert windows until they fail to ap‐
pear.

15/64

-v, --view

View only mode: do not open the external text editor. This flag in‐
structs Tp-Note to start an internal file watcher and web server
and connect the system’s default web browser to view the note
file and to observe live file modifications. The configuration set‐
ting ‘arg_default.edit=true’ or the environment variable
‘TPNOTE_EDITOR=""’ disables the viewer. However, with ‘--view’
given at the command line, the viewer appears, regardless of the
value of ‘arg_default.edit’.

NB: By default, Tp-Note tries to synchronize every file it opens. To
prevent the viewed filename from changing, ‘--view’ can be used
together with ‘--no-filename-sync’.

-V, --version

Print Tp-Note’s version, its built-in features and the path to the
sourced configuration file. The output is YAML formatted for fur‐
ther automatic processing. In addition, use ‘-V -b -d trace’ for
configuration file debugging.

-x DIRECTORY, --export=DIRECTORY

Prints the note as HTML rendition into DIRECTORY. ‘-x -’ prints
to stdout. The empty string, e.g. ‘--export=’ or ‘-x ""’, defaults to
the directory where the note file resides. No external text editor
or viewer is launched. Can be combined with ‘--batch’ to avoid
popup error alert windows.

--export-link-rewriting=MODE

Chooses how local links in the exported HTML file are written
out: ‘off’, ‘short’ or ‘long’ (default). No link rewriting occurs, for
the MODE ‘off’. The MODE ‘short’ rewrites all local relative links
to absolute links, whose base is the first parent directory contain‐
ing the marker file ‘.tpnote.toml’. NB, the directory of the mark‐
er file defines the base for all absolute local links in your Tp-Note
file! The mode ‘long’ rewrites all local links to absolute links
whose base is the system’s root directory ‘/’. For relative local
links this is performed by prepending the path to the note file.
Absolute local links get the path to the marker file ‘.tpnote.toml’
prepended. In case you do not place a ‘.tpnote.toml’ file in a par‐
ent directory, the base for absolute local links in your note file is
interpreted as ‘/’.

16/64

The right MODE choice depends on how you view the resulting
HTML: if you publish on a web server, then ‘short’ might be a
good choice. Do not forget to place a marker file ‘.tpnote.toml’
somewhere in the document’s path. If you view the HTML file
directly in your web browser, better choose ‘long’. In this case,
the present of a marker file will not affect the output. NB: You
can also set this option via Tp-Note’s configuration file with the
key ‘arg_default.export_link_rewriting’.

7 THE NOTE’S DOCUMENT STRUCTURE

Tp-Note considers a text file to be a valid note file, if its:

file extension is listed in one of the configuration file variable
‘filename.extensions’; if its

content has a valid YAML header and

the YAML header contains a key whose name is defined in the con‐
figuration file variable ‘tmpl.compulsory_header_field’ (default
‘title’).

A Tp-Note note file is always UTF-8 encoded. As newline, either the
Unix standard ‘\n’ or the Windows standard ‘\r\n’ is accepted. Tp-Note
writes out newlines according the operating system it runs on.

7.1 The document’s header and body

Tp-Note is designed to be compatible with ‘Pandoc’s and’RMarkdowns doc‐
ument structure as shown in the figure below. In this documentation
the terms “YAML header”, “header” and “front matter” are used as syn‐
onyms to designate to document’s metadata block at the beginning of
the text file:

The YAML front-matter starts at the beginning of the document with
‘---’ and ends with ‘...’ or ‘---’. Note that according to the YAML
standard, string literals are always encoded as JSON strings. By conven‐
tion, a valid Tp-Note file has at least one YAML field named ‘title:’ (the

•

•

•

<YAML-front-matter>

<document-body>

17/64

name of this compulsory field is defined by the
‘tmpl.compulsory_header_field’ variable in the configuration file and
can be changed there).

Note that prepended text, placed before the YAML front-matter, is ig‐
nored. There are however certain restrictions: If present, the skipped
text should not be too long (cf. constant
‘BEFORE_HEADER_MAX_IGNORED_CHARS’ in the source code of Tp-Note) and it
must be followed by at least one blank line:

There is no restriction about the markup language being used in the
note’s text body. However, the default templates assume Markdown
and the file extension ‘.md’. Both can be changed easily by adapting Tp-
Note’s configuration file. Besides the requirements concerning its head‐
er, a valid Tp-Note file must have a filename extension that is listed in
the configuration file variable: ‘filename.extensions’. The latter also de‐
termines which internal markup language render is called for Tp-
Note’s internal viewer.

7.2 Links to resources and other documents

7.2.1 Link types

The document’s body often contains (inline) links to resources
e.g. images and links to other documents. This section describes how
the automatic path rewriting of local links works.

In general, the link syntax depends on the markup language used in
the Tp-Note file. The following examples illustrate the different link
types Tp-Note understands:

Link type Example in Markdown notation

Absolute URL ‘[blog](<https://blog.getreu.net>)’

Relative URL (=local
link) ‘![Alt text](<images/my logo.png>)’

Absolute local link ‘![Alt text](</images/my logo.png>)’

Prepended text is ignored.

<YAML-front-matter>

<document-body>

18/64

Link type Example in Markdown notation

Relative local link ‘![Alt text](<images/my logo.png>)’

Relative local link ‘[my doc](<../../notes/31-my doc.md>)’

Relative local autolink ‘<tpnote:../../notes/31-my%20doc.md>’

Shorthand link ‘[my doc](<../../notes/31>)’

Shorthand autolink ‘<tpnote:../../notes/31>’

Formatted shorthand
link ‘<tpnote:../../notes/31?-->)’

Remarks:

The base for absolute local links is the first parent directory con‐
taining the marker file ‘.tpnote.toml’. If absent, absolute local links
refer to the root directory ‘/’.
Shorthand link: Instead of writing out the full link destination, e.g.
‘[my doc](<./docs/20230508-my note.md>)’, you can shorten the link
to ‘[my doc](<docs/20230508>)’ indicating only the destination’s
sort-tag. Alternatively, the same shorthand link can be expressed as
autolink as well: ‘<http:docs/20230508>’. NB, if more than one docu‐
ment with the same sort-tag exist in a directory, the viewer only
displays the first in alphabetical order. To set up a different order,
you can extend the sort-tag until it becomes unique, e.g. by renam‐
ing the destination document in the above example to ‘./ docs/
20230508a-my note.md’. This way you obtain the unique sort-tag
‘20230508a’.

Although Tp-Note’s built in viewer follows absolute and relative local
links, usually the latter are preferred. They make moving documents
easier, as relative links do not break when the source and the destina‐
tion documents are moved together.

As mentioned above, the shortest way to refer to other Tp-Note docu‐
ments, is indicating their sort-tag only, e.g. ‘<tpnote:dir/123>’ and ‘[my
file](<tpnote:dir/123>)’. If the other document is located in the same
directory, the links are even shorter: ‘<tpnote:123>’ and ‘[my file]
(<tpnote:123>)’.

7.2.2 Local links in HTML export

Tp-Note’s exporter function ‘--export’ converts a given Tp-Note file into
HTML and adds ‘.html’ to the output filename. Links in the documents
content to other Tp-Note files are hereby rewritten by appending
‘.html’ to their URLs. This way you can convert groups of documents to

•

•

19/64

HTML and later jump from document to document in your web
browser. The option ‘--export-link-rewriting’ allows you to fine-tune
how local links are written out. Valid values are: ‘off’, ‘short’ and ‘long’.

In order to achieve this, the user must respect the following convention
concerning absolute paths in local links in Tp-Note documents: When a
document contains a local link with an absolute path, the base of this
path is considered to be the directory where the marker file
‘.tpnote.toml’ resides (or ‘/’ in non exists). The option ‘--export-link-
rewriting’ decides how local links in the Tp-Note document are conver‐
ted when the HTML is generated. If its value is ‘short’, then local links
with relative paths are converted to absolute paths. The base of the res‐
ulting path is where the ‘.tpnote.toml’ file resides (or / if none exists).
Consider the following example ‘--export-link-rewriting=short’:

The Tp-Note file ‘/my/docs/car/bill.md’ contains
an absolute local link: ‘/car/scan.jpg’,
and another relative local link: ‘./photo.jpg’.
The document root marker is: ‘/my/docs/.tpnote.toml’.

The images in the resulting HTML will appear as

‘/car/scan.jpg’.
‘/car/photo.jpg’.

For ‘--export-link-rewriting=long’, in addition to the above, all abso‐
lute paths in local links are prepended with the marker file’s directory.
Consider the following example:

The Tp-Note file ‘/my/docs/car/bill.md’ contains
an absolute local link: ‘/car/scan.jpg’,
and another relative local link: ‘./photo.jpg’.
The document root marker is: ‘/my/docs/.tpnote.toml’.

The images in the resulting HTML will appear as

‘/my/docs/car/scan.jpg’.
‘/my/docs/car/photo.jpg’.

Summary: The right ‘--export-link-rewriting’ choice depends on how
you view the resulting HTML: if you publish on a web server, then
‘short’ might be a good choice (do not forget to place a marker file
‘.tpnote.toml’ somewhere in the document’s path). If you view the
HTML file directly in your web browser, better choose ‘long’.

•
•
•
•

•
•

•
•
•
•

•
•

20/64

7.2.3 Local links with format strings

So far, we have seen how Tp-Note’s viewer and HTML exporter con‐
verts the destination of local links ‘[text](destination)’. Concerning
the local link’s text property, the situation is simpler as the text prop‐
erty never changes during the above discussed rewriting process. How‐
ever, it is possible to overwrite the displayed text property by append‐
ing a format string to the destination: ‘[formatted destination]
(destination?format string)’.

All local links in the following tables have the same link destination
‘dir/01ac-Tulips--red, yellow.md’. The examples differ only in the way
the link is displayed in the browser.

Local link What you see

‘[matters](<dir/01ac-Tulips--red, yellow.md>)’ matters

‘[matters](<dir/01ac>)’ matters

Formatted local link What you see

‘[whatever](<dir/01ac-Tulips--red, yellow.md?
>)’

Tulips–red, yel‐
low

‘[whatever](<dir/01ac?>)’ Tulips–red, yel‐
low

‘[whatever](<dir/01ac?,>)’ Tulips–red

‘[whatever](<dir/01ac?-->)’ Tulips

‘[whatever](<dir/01ac?--:,>)’ red

‘[whatever](<dir/01ac?#>)’ 01ac

‘[whatever](<dir/01ac??>)’ 01ac-Tulips–red,
yellow.md

Observations:

The format operator ‘?’ (not followed by a ‘#’) strips the path, the
sort-tag, the copy-counter and the filename extension. In other
words, it keeps only the file stem.
The string following the question mark is the to pattern: ‘?<to>’. It
marks the exclusive end of the matching.
Consider the pattern ‘?<from>:<to>’: The string before the colon is
the from pattern, the string after the colon is the to pattern. Patterns
are always searched from the start of the string, e.g. in Latin scripts
from the left to the right.
The format operator ‘?#’ prints the sort-tag.

1.

2.

3.

4.

21/64

The format operator ‘??’ prints the whole filename.
All format operators can be optionally followed by a search pattern.

Local autolink What you see

‘<tpnote:dir/01ac-Tulips--red,
%20yellow.md>’

dir/01ac-Tulips–red,%20yel‐
low.md

‘<tpnote:dir/01ac>’ dir/01ac

Formatted local autolink What you see

‘<tpnote:dir/01ac-Tulips--red,
%20yellow.md?>’ Tulips–red, yellow

‘<tpnote:dir/01ac?>’ Tulips–red, yellow

‘<tpnote:dir/01ac??>’ 01ac-Tulips–red, yel‐
low.md

‘<tpnote:dir/01ac??.>’ 01ac-Tulips–red, yellow

‘<tpnote:dir/01ac??:.>’ 01ac-Tulips–red, yellow

‘<tpnote:dir/01ac??-:,>’ Tulips–red

‘<tpnote:dir/01ac??--:,>’ red

8 METADATA FILENAME SYNCHRONIZATION

Consider the following Tp-Note filename generated with the default fi‐
lename scheme (cf section “Filename synchronization schemes” for
other schemes):

The filename has 4 parts:

The ‘-’ between ‘{{ fm.fm_sort_tag }}’ and ‘{{ fm.fm_title }}’ is here‐
after referred to as sort-tag separator
(cf. ‘filename.sort_tag.separator’).

A so-called sort tag is an alphanumerical prefix at the beginning of the
filename. It is used to order files and notes in the file system. Besides
numerical digits and lowercase letters, a sort tag may contain any com‐

5.
6.

20151208-Make this world a better place--Suggestions.md

{{ fm.fm_sort_tag }}-{{ fm.fm_title }}--{{ fm.fm_subtitle }}.
{{ fm.fm_file_ext }}

22/64

bination of ‘_’, ‘-’, ‘=’ and ‘.’ (cf. ‘filename.sort_tag.extra_chars’). If a
sort-tag contains lowercase letters, only 2 in a row are allowed (cf.
‘filename.sort_tag.letters_in_succession_max’). Examples:

Chronological sort tag

NB: All chronological sort-tags must have at least one counter with
4 digits or more, e.g. ‘2015’. The character ‘-’ between the counters
is optional.

Tip: Always include the year with 4 digits in chronological sort-tags.

Sequence number sort tag

NB: None of the counters exceeds 3 digits (cf.
‘filename.sort_tag.sequential.digits_in_succession_max’) which is
the criterium to recognize a sequence number sort-tag. The largest
counter in these examples is ‘144’, so all sort_tags are sequence
numbers.

Alphanumerical sequence number sort tag

NB: the example is equivalent to the previous one. The only differ‐
ence is, that the separators are expressed through the alternation of
digits and letters.

Summary:

A sort-tag is composed of a number of counters, which can be nu‐
merical, e.g. ‘123.28’ or combined numerical/letter based,
e.g. ‘123ab’.

A counter is set of digits (base 10) ‘123’ or a set of lowercase letters
(base 26) ‘ab’.

•

 20140211-Reminder.doc
 20151208-Manual.pdf
 2015-12-08-Manual.pdf

•

 02-Invoices/
 08-Tax documents/
 09_2_144-Manual.pdf
 09.9.1-Notes.md

•

 02-Invoices/
 08-Tax documents/
 09b144-Manual.pdf
 09i1-Notes.md

1.

2.

23/64

A letter based counter can be maximal 2 letters wide. Its maximum
is ‘zz’ (cf. ‘filename.sort_tag.letters_in_succession_max’).

A sequential sort-tag is a sort-tag that whose counters are at most 3
digits wide (cf. ‘sort_tag.sequential.digits_in_succession_max’).

The filter ‘incr_sort_tag’ increments only sequential sort-tags.

In order not to confuse sequential and chronological sort-tags, it is
recommended to always write out the year in chronological sort-
tags with 4 digits, e.g. ’‘2013-08-10’ or ‘20130810’.

Before Tp-Note creates a new note file, it searches the current directory
for the latest existing Tp-Note file. If that file starts with a sequence
number sort-tag, Tp-Note increments that number and uses the result
as sort-tag for the new note file. Otherwise, the new note gets a chrono‐
logical sort tag of today.

A note’s filename is said to be in sync with its metadata, when the fol‐
lowing holds (slightly simplified, see ‘tmpl.sync_filename’):

filename on disk without sort tag == ‘{{ fm.fm_title }}--
{{ fm.fm_subtitle }}.md’

1

Example, consider the following document with the filename:

and the content:

As ‘My file.md’ is not equal to ‘1. The Beginning--Note.md’, Tp-Note will
rename the file to ‘20211031-1. The Beginning--Note.md’. If the file‐
name had been ‘05_02-My file.md’, it would rename it to ‘05_02-1. The
Beginning--Note.md’.

3.

4.

5.

6.

20211031-My file.md

title: 1. The Beginning
subtitle: Note
author: Getreu
date: 2021-10-31
lang: en-GB

remainder: false

24/64

Note: When the YAML front-matter does not contain the optional
‘sort_tag’ variable, Tp-Note will never change a sort tag. Nevertheless,
it might change the rest of the filename!

The reason why by default Tp-Note does not change sort tags is, that
they define their order in the file listing. In general this order is inde‐
pendent of the notes content. The simplest way to organize the sort
tags of your files is by renaming them directly in your file system. Nev‐
ertheless, in some cases you might want to have full control over the
whole filename through the note’s YAML front-matter. For example, if
— for some reason — you have changed the document’s date in the
front-matter and you want to change the chronological sort tag in one
go. In order to overwrite the note’s sort tag on disk, you can add a
‘sort_tag’ string-variable to its front-matter:

Note, the above sort-tag value - here a number - must be enclosed with
quotes in order label it as string type. When Tp-Note synchronizes the
note’s metadata with its filename, it will also change the sort tag from
‘20211031’ to ‘20211101’. The resulting filename becomes ‘20211101-1.
The Beginning--Note.md’.

The ‘sort_tag’ variable also becomes handy, when you want to create
one single note without any sort tag:

In the same way, how it is possible to pin the sort tag of the note from
within the note’s metadata, you can also change the file extension by
adding the optional ‘file_ext’ variable into the note’s front-matter:

title: 1. The Beginning
date: 2021-10-31

sort_tag: '20211101'

title: 1. The Beginning

sort_tag: ''

title: 1. The Beginning

file_ext: rst

25/64

This will change the file extension from ‘.md’ to ‘.rst’. The resulting fi‐
lename becomes ‘20211101-1. The Beginning--Note.rst’.

Important: ‘rst’ must be one of the registered file extensions listed in
the ‘filename.extensions’ variable in Tp-Note’s configuration file. If
needed you can add more extensions there. If the new filename exten‐
sion is not listed in one of these variables, Tp-Note will not be able to
recognize the note file as such and will not open it in the external text
editor and viewer.

Note: When a ‘sort_tag’ variable is defined in the note’s YAML header,
you should not change the sort tag string in the note’s file name manu‐
ally by renaming the file, as your change will be overwritten next time
you open the note with Tp-Note. However, you can switch back to Tp-
Note’s default behaviour any time by deleting the ‘sort_tag’ line in the
note’s metadata. The same applies to the ‘file_ext’ variable.

The metadata filename synchronization feature can be disabled per‐
manently by setting the configuration file variable
‘arg_default.no_filename_sync = true’. To disable this feature for one
time only, invoke Tp-Note with ‘--no-filename-sync’. To exclude a par‐
ticular note from filename synchronization, add the YAML header field
‘filename_sync: false’.

Note, that in the above described examples, the information flow al‐
ways goes from the YAML note header towards the note’s filename.
However, when Tp-Note opens a text file without a YAML header, a new
header is added automatically. In this case the information flow goes
from the filename towards the header, namely in the opposite direc‐
tion. Once the new header is prepended to the text file, a regular file‐
name synchronization - as described above - is triggered and executed
as described above.

title: 1. The Beginning

filename_sync: false

26/64

8.1 Filename synchronization schemes

Technically, the rules how the note’s header relates to its filename are
encoded in customizable so-called filename templates (cf. section Tem‐
plates). These templates exist in two different variants referred to as
default scheme and zettel scheme:

The 'default' scheme:

Example:

The filename synchronization template from the default scheme set
looks like (simplified):

It generates from the above example the filename:

The ‘zettel’ scheme:

Although the default scheme covers most of the daily note-taking,
Luhmann’s Zettelkasten knowledge management system requires
slightly different templates, hence the name zettel scheme.

The following example illustrates the header fields of a typical
‘zettel’ scheme note file:

1.

title: 1. The Beginning
subtitle: Note

Once upon a time...

{{ fm.fm_sort_tag }}-{{ fm.fm_title }}--{{ fm.fm_subtitle }}.
{{ fm.fm_file_ext }}

20211031-1. The Beginning--Note.md

2.

title: Lemon
keywords:

- fruit
- round
- sour taste

scheme: zettel
sort_tag: 2b3

27/64

The filename synchronization template from the zettel scheme set
looks like (simplified):

It generates the following filename:

9 CUSTOMIZATION

Tp-Note is shipped with a default internal configuration that can be
customized by merging a series of configuration files from various loc‐
ations into the default values. This happens in the following order:

Unix and macOS only: ‘/etc/tpnote/tpnote.toml’
The file the environment variable ‘TPNOTE_CONFIG’ points to.
The user’s configuration file:

Unix: ‘~/.config/tpnote/tpnote.toml’
Windows: ‘C:
\Users\<LOGIN>\AppData\Roaming\tpnote\config\tpnote.toml>’
macOS: ‘/Users/<LOGIN>/Library/Application Support/tpnote’

At startup all parent directories of the note file path ‘<PATH>’ are
searched for a marker file named ‘.tpnote.toml’. If found, the docu‐
ment root moves from ‘/’ to the found location. If present and its
content is not empty, Tp-Note interprets the file’s content as config‐
uration file.
The file indicated by the command line parameter ‘--config
<FIlE>’.

When Tp-Note starts, it first merges all available configuration files
into the default configuration. Then the resulting syntax is checked. If
not correct, the last sourced configuration file is renamed (thus dis‐
abled) and Tp-Note starts with its internal default configuration. For
debugging, you can print out the merged result with ‘-V -b -d trace’.

To write a custom configuration file, generate a template with ‘-C’:

The [lemon] belongs to the Rutaceae family.
[lemon]: https://en.wikipedia.org/wiki/Lemon

{{ fm.fm_sort_tag }}--{{ fm.fm_title }}__{{ fm.fm_keywords }}.
{{ fm.fm_file_ext }}

2b3--Lemon__fruit_round_sour taste.md

1.
2.
3.

◦
◦

◦
4.

5.

tpnote -V -b -d trace |less

tpnote -C ~/.config/tpnote/tpnote.toml

28/64

The template shows all variables with their defaults values. When you
change a value, do not forget to uncomment the modified line to activ‐
ate your change. Also make sure to keep the ‘version’ variable at the
beginning of the file commented out. As any Tp-Note upgrade might in‐
clude a breaking change in the configuration file structure, try to keep
your custom configuration small.

Some filename and template related variables are grouped into a
‘scheme’. The shipped configuration file lists two schemes: ‘default’ and
‘zettel’. The scheme used when creating a new note, is selected by the
commend line option ‘--scheme’, the environment variable
‘TPNOTE_SCHEME’ or the configuration variable ‘arg_default.scheme’. The
scheme selected when synchronizing a Tp-Note header with its file‐
name depends on the value of the header variable ‘scheme:’ which de‐
faults to ‘default’ (cf. ‘scheme_sync_default’).

Note, that the merging algorithm merges all values, except arrays.
These are usually replaced by the subsequent configuration file. There
is one exception though: top level arrays are also merged. An example
to this is the top level array ‘[[scheme]]’. In the following example we
overwrite the variable ‘extension_default’ in the scheme ‘default’. All
other variables remain untouched.

To add a custom scheme you must provide all variables:

The following example illustrates how non-top-level arrays are over‐
written by the subsequent configuration file. The default configuration
lists about 20 MIME types. After merging the following example, the
configuration lists only the two MIME types ‘jpeg’ and ‘jpg’ in
‘served_mime_types’.

[[scheme]]
name="default"
[scheme.filename]
extension_default = "txt"

[[scheme]]
name="my-custom-scheme"
[scheme.filename]
Insert all variables here.
[scheme.tmpl]
Insert all variables here.

[viewer]
served_mime_types = [

["jpeg", "image/jpeg"],

29/64

9.1 Register your own text editor

There are two ways to modify the default file editor, Tp-Note launches
when it starts: either you can modify the configuration file variables
‘app_args.*.editor’ and ‘app_args.*.editor_console’, or alternatively,
you can set the ‘TPNOTE_EDITOR’ environment variable (cf. examples in
the chapter ENVIRONMENT_VARIABLES below).

The configuration file variables ‘app_args.unix.editor’ and
‘app_args.unix.editor_console’ define lists of external text editors to be
launched for editing. The lists contain by default well-known text edit‐
or names and their command line arguments for Unix like operating
systems. For other systems consult: ‘app_args.windows.editor’,
‘app_args.windows.editor_console’, ‘app_args.macos.editor’ and
‘app_args.macos.editor_console’. Tp-Note tries to launch every text ed‐
itor in ‘app_args.*.editor’ from the beginning of the list until it finds
an installed text editor. When Tp-Note is started on a Linux console, the
list ‘app_args.*.editor_console’ is used instead. Here you can register
text editors that do not require a graphical environment, e.g. ‘vim’ or
‘nano’. In order to use your own text editor, just place it at the top of the
list. To debug your changes invoke Tp-Note with
‘tpnote --debug debug --popup --edit’.

The following example showcases the configuration for the Kate file
editor. The entry ‘kate’ launches the binary, while the command line
parameter ‘--block’ guarantees, that the launched process blocks until
the user closes the editor. Tp-Note detects the end of the process, checks
if the title of the note files has changed in its YAML header and re‐
names the note file if necessary.

The equivalent configuration with environment variable:

["jpg", "image/jpeg"],
]

[app_args]
unix.editor = [

[
"kate",
"--block"

]
]

TPNOTE_EDITOR="kate --block" tpnote

30/64

All items in the above list are subject to limited template expansion al‐
lowing to insert the value of environment variables. Consider the fol‐
lowing example:

When the configuration file is loaded, the above expression
‘{{ get_env(name="LOCALAPPDATA") }}’ expands under Windows for a
user with the username ‘Joe’ to ‘C:\User\Joe\AppData\Local’ resulting
in:

In general, when you configure Tp-Note to work with your text editor,
make sure, that your text editor does not fork! You can check this by
launching the text editor from the command line: if the command
prompt returns immediately, then the file editor forks the process. On
the other hand everything is OK, when the command prompt only re‐
appears at the moment the text editor is closed. Many text editors
provide an option to restrain from forking: for example the Visual Stu‐
dio Code file editor can be launched with the ‘--wait’ option, Vim with
‘--nofork’ or Kate with ‘--block’.

However, Tp-Note also works with forking text editors. Although this
should be avoided, there is a possible workaround. Observe the follow‐
ing example:

[app_args]
windows.editor = [

[
"{{get_env(name=\"LOCALAPPDATA\")}}\\Programs\\Microsoft

VS Code\\Code.exe",
"-n",
"-w",

]
]

[app_args]
windows.editor = [

[
"C:\\User\\Joe\\AppData\\Local\\Programs\\Microsoft VS Code\

\Code.exe",
"--new-window", "--wait",
]

]

$ TPNOTE_EDITOR="kate" tpnote
/home/getreu/20230714-getreu--Note.md
$

31/64

In the above example Tp-Note launches the ‘kate’ editor in a forking
manner as the command line flag ‘--block’ is missing. Internally the
editor process launching returns immediately, leaving Tp-Note without
any means to detect when exactly the user closes the editor. Hence, Tp-
Note is not able to check if the user has changed the note’s header and
no filename synchronization can occur afterwards.

As a workaround, you can manually trigger the filename synchroniza‐
tion after editing with ‘tpnote --batch "$FILE"’:

Whereby ‘FILE=$(tpnote --batch)’ creates the note file, ‘kate "$FILE"’
opens the text editor and ‘tpnote --batch "$FILE"’ synchronizes the fi‐
lename after editing.

NB: Try to avoid forking at all cost. As mentioned above, most text edit‐
ors have a command line flag to prevent the process from forking:

Register a Flatpak Markdown editor

Flathub for Linux is a cross-platform application repository that works
well with Tp-Note. To showcase an example, we will add a Tp-Note
launcher for the Mark Text Markdown text editor available as Flatpak
package. Before installing, make sure that you have set up Flatpack
correctly. Then install the application with:

To test, run Mark Text from the command line:

Then place a Tp-Note configuration in its search path (e.g. ‘~/.config/
tpnote/tpnote.toml’) with the following content:

FILE=$(tpnote --batch) # Create the new note.
tpnote --view "$FILE"& # Launch Tp-Note's viewer.
kate "$FILE" # Note, the prompt returns immediatly as

the editor forks.
After closing the editor when editing is

done...
tpnote --batch "$FILE" # Synchronize the note's filename again.

TPNOTE_EDITOR="kate --block" tpnote

sudo flatpak install flathub com.github.marktext.marktext

flatpak run com.github.marktext.marktext

[app_args]
unix.editor = [["flatpak", "run",

"com.github.marktext.marktext",]]

32/64

https://www.flathub.org/home
https://www.flathub.org/apps/details/com.github.marktext.marktext
https://www.flathub.org/apps/details/com.github.marktext.marktext
https://flatpak.org/setup/

The structure of this variable is a list of lists. Every item in the outer
list corresponds to one entire command line launching a different text
editor, here Marktext. When launching, Tp-Note searches through this
list until it finds an installed text editor on the system.

Save the modified configuration file. Next time you launch Tp-Note, the
Mark Text-editor will open.

Register a console text editor running in a terminal emulator

In this setup Tp-Note launches the terminal emulator which is con‐
figured to launch the text editor as child process. Neither process
should fork when they start (see above).

Here, some examples you can adjust to your needs and taste:

Neovim in Xfce4-Terminal:

Helix-editor in XFCE4-Terminal:

Helix in LXTerminal:

•

[app_args]
unix.editor = [

[
"xfce4-terminal",
"--disable-server",
"-x",
"nvim",
"+colorscheme pablo",
"+set syntax=markdown",

],
]

•

[app_args]
unix.editor = [

[
"xfce4-terminal",
"--disable-server",
"-x",
"hx",

],
]

•

[app_args]
unix.editor = [

[

33/64

Helix in Xterm:

Helix in Alacritty:

Flatpack Helix in XFCE4 terminal

"lxterminal",
"--no-remote",
"-e",
"hx",

],
]

•

[app_args]
unix.editor = [

[
"xterm",
"-fa",
"DejaVu Sans Mono",
"-fs",
"12",
"-e",
"hx",

],
]

•

[app_args]
unix.editor = [

[
"alacritty",
"-e",
"hx",

],
]

•

[app_args]
unix.editor = [

[
"xfce4-terminal", "--disable-server", "-x",
"flatpak", "run", "com.helix_editor.Helix",

],
]

unix.editor_console = [
[

"flatpak", "run", "com.helix_editor.Helix"

34/64

9.2 Change the file extension for new note files

Tp-Note identifies the note’s markup language by its file extension and
renders the content accordingly (see ‘filename.extensions’ variable).
For example: the variable ‘filename.extensions’ lists some extensions,
that are regarded as Markdown files:

The default file extension for new note files is defined as:

If you prefer rather the file extension ‘.markdown’ for new notes, write a
configuration file with:

This modification does not change how the note file’s content is inter‐
preted - in this case as Markdown - because both file extensions ‘.md’
and ‘.markdown’ are rendered as ‘Markdown’ according to
‘filename.extensions’.

],
]

[[scheme]]
name = "default"
[scheme.filename]
extensions = [

["txt", "ToMarkdown", "Markdown"],
["md", "ToMarkdown", "Markdown"],
["rst", "Disabled", "ReStructuredText"],
["htmlnote", "PassThrough", "Html"],
["txtnote", "Disabled", "PlainText"],
["adoc", "Disabled", "PlainText"],
["text", "ToMarkdown", "Markdown"],
["markdn", "ToMarkdown", "Markdown"],
["markdown", "ToMarkdown", "Markdown"],

]

[[scheme]]
name = "default"
[scheme.filename]
extension_default = "md"

[[scheme]]
name = "default"
[scheme.filename]
extension_default = "markdown"

35/64

9.3 Configure the natural language detection algorithm

When creating a new header for a new or an existing note file, a lin‐
guistic language detection algorithm tries to determine in what natural
language the note file is authored. Depending on the context, the al‐
gorithm processes as input: the header field ‘title:’ or the first sen‐
tence of the text body. The natural language detection algorithm is im‐
plemented as a template filter named ‘get_lang’, which is used in vari‐
ous Tera content templates ‘tmpl.*_content’ in Tp-Note’s configuration
file. The filter ‘get_lang’ is parametrized by the configuration variable
‘tmpl.filter.get_lang’ containing a list of ISO 639-1 encoded lan‐
guages, the algorithm considers as potential detection candidates, e.g.:

As natural language detection is CPU intensive, it is advised to limit the
number of detection candidates to 5 or 6, depending on how fast your
computer is. The more language candidates you include, the longer the
note file creation takes time. As a rule of thumb, with all languages en‐
abled the creation of new notes can take up to 4 seconds on my com‐
puter. Nevertheless, it is possible to enable all available detection can‐
didates with the pseudo language code ‘+all’ which stands for “add all
languages”:

Once the language is detected with the filter ‘get_lang’, it passes anoth‐
er filter called ‘map_lang’. This filter maps the result of ‘get_lang’ - en‐
coded as ISO 639-1 code - to an IETF language tag. For example, ‘en’ is
replaced with ‘en-US’ or ‘de’ with ‘de-DE’. This additional filtering is use‐
ful, because the detection algorithm can not figure out the region code
(e.g. -US or -DE) by itself. Instead, the region code is appended in a sep‐
arate processing step. Spell checker or grammar checker like [LTeX]
rely on this region information, to work properly.

The corresponding configuration looks like this:

[[scheme]]
name = "default"
[scheme.tmpl]
filter.get_lang = ["en", "fr", "de", "et"]

[[scheme]]
name = "default"
[scheme.tmpl]
filter.get_lang = ["+all",]

[[scheme]]
name = "default"
[scheme.tmpl]

36/64

When the user’s region setting - as reported from the operating sys‐
tem’s locale setting - does not exist in above list, it is automatically ap‐
pended as additional internal mapping. When the filter map_lang en‐
counters a language code for which no mapping is configured, the in‐
put language code is forwarded as it is without modification, e.g. the
input fr results in the output fr. Subsequent entries that differ only in
the region subtag, e.g. ‘['en', 'en- GB'], ['en', 'en-US']’ are ig‐
nored.

Note, that the environment variable ‘TPNOTE_LANG_DETECTION’ - if set -
takes precedence over the ‘tmpl.filter.get_lang’ and
‘tmpl.filter.map_lang’ settings. This allows configuring the language
detection feature system-wide without touching Tp-Note’s configura‐
tion file. The following example achieves the equivalent result to the
configuration hereinabove:

If you want to enable all language detection candidates, add the
pseudo tag ‘+all’ somewhere to the list:

In the above example the IETF language tags ‘en-US’ and ‘de-DE’ are re‐
tained in order to configure the region codes ‘US’ and ‘DE’ used by the
‘map_lang’ template filter.

For debugging observe the value of ‘SETTINGS’ in the debug log with:

If wished for, you can disable Tp-Note’s language detection feature, by
deleting all entries in the ‘tmpl.filter.get_lang’ variable:

Like above, you can achieve the same with:

filter.get_lang = ["en", "fr", "de", "et"]
filter.map_lang = [

["en", "en-US",],
["de", "de-DE",],

]

TPNOTE_LANG_DETECTION="en-US, fr, de-DE, et" tpnote

TPNOTE_LANG_DETECTION="en-US, de-DE, +all" tpnote

tpnote -d trace -b

[[scheme]]
name = "default"
[scheme.tmpl]
filter.get_lang = []

37/64

9.4 Localize the note’s front matter

Be default, the front matter variable names are printed in English
when creating new note files from templates. For example the header
variable ‘fm.fm_subtitle’ is displayed as ‘subtitle:’ in the note’s head‐
er.

This translation relation is defined in the configuration file variable
‘scheme.tmpl.fm_vars.localization’. Consider the following simplified
example:

To change the natural language of the displayed header variable
names, modify the second column of the above table. Example:

TPNOTE_LANG_DETECTION="" tpnote

[[scheme]]
name = "default"
fm_vars.localization = [

["fm_title", "title"],
["fm_subtitle", "subtitle"],
["fm_author", "author"],
["fm_date", "date"],
["fm_lang", "lang"],
["fm_sort_tag", "sort_tag"],
["fm_file_ext", "file_ext"],
["fm_no_filename_sync", "no_filename_sync"],
["fm_filename_sync", "filename_sync"],
["fm_scheme", "scheme"],

]

[[scheme]]
name = "default"
fm_vars.localization = [

["fm_title", "Titel"],
["fm_subtitle", "Untertitel"],
["fm_author", "Autor"],
["fm_date", "Datum"],
["fm_lang", "Sprache"],
["fm_sort_tag", "Kennzeichen"],
["fm_file_ext", "Datei_ext"],
["fm_no_filename_sync", "Keine_Sync"],
["fm_filename_sync", "Dateinamensync"],
["fm_scheme", "Schema"],

]

38/64

Keep in mind, that the templates do not change! Templates refer to a
header variable with an identifier starting with ‘fm.fm_’, The identifier
corresponds to the first column of the above table.

As an example, consider the following localization:

The front matter variable ‘FOO:’ is internally in templates represented
as ‘fm.fm_foo’. For example, the template ‘tmpl_html.viewer’ may con‐
tain the expression ‘{{ fm.fm_foo | name }}’ which is then printed as
‘FOO’.

NB: In general, a variable with the key ‘fm.fm_bar’ may contain a nested
map:

The (de-)localization occurs only at the root map level. All nested keys
names, e.g. ‘baz’ remain untouched.

9.5 Change the default markup language

Tp-Note’s core functionality, the management of note file headers and
filenames, is markup language agnostic. However, there is one content
template ‘tmpl.annotate_file_content’ that generates a hyperlink. The
hyperlink syntax varies depending on the markup language. Hence,
you should not forget to modify the ‘tmpl.annotate_file_content’ con‐
tent template, when you change the default markup language defined
in ‘filename.extension_default’.

Tp-Note’s built-in viewer is not markup language agnostic. It comprises
three different markup renderers (cf. section Customize the built-in
note viewer):

Markdown (file extension .md)
ReStructuredText (file extension .rst) and
PlainText (Link only renderer, file extension .txtnote)

[[scheme]]
name = "default"
fm_vars.localization = [

["fm_foo", "FOO"],
]

"fm.fm_bar": Object {
"baz": String("Hello"),

}

•
•
•

39/64

9.5.1 Change the default markup language to ReStructuredText

Tp-Note’s core function is a template system and as such it depends
very little on the used markup language. The default templates are de‐
signed in a way that they contain almost no markup specific code.
Though there is one little exception in the ‘annotate_file_content’ tem‐
plate. For instance, to instruct Tp-Note to create .rst files, create a con‐
figuration file ~/.config/tpnote/tpnote.toml with the following con‐
tent:

First, create a configuration file ‘~/.config/tpnote/tpnote.toml’ with:

In the above replace the string ‘COMPLETE HERE’ with the default values
for the variables ‘annotate_file_content’ you obtain with ‘tpnote -C -
| less’.

Then, in annotate_file_content replace the line:

with its ReStructuredText counterpart:

As a result, all future notes are created as ‘*.rst’ files.

[[scheme]]
name = "default"
[scheme.filename]
extension_default = "rst"
[scheme.tmpl]
annotate_file_content = """
COMPLETE HERE
"""

[[scheme]]
name = "zettel"
[scheme.filename]
extension_default = "rst"
[scheme.tmpl]
annotate_file_content = """
COMPLETE HERE
"""

[{{ path | file_name }}](<{{ path | file_name }}>)

`<{{ path | file_name }}>`_

40/64

9.5.2 Change the markup language for one specific note only

You can change the Markup language of a specific note by adding the
variable ‘file_ext:’ to its YAML header. For example, for ReStructured‐
Text add:

When Tp-Note triggers the next filename synchronization, the filename
extension of the note file will change to ‘.rst’. The above modification
applies to the current note only.

9.6 Change the sort tag character set

Sort-tags for new notes are generated with the ‘tmpl.*_filename’ tem‐
plates. Before changing the sort-tag generation scheme in these tem‐
plates, make sure to enable the right set of potential sort-tag charac‐
ters.

In the default scheme, the digits ‘0’-‘9’, all lower case letters and the
characters ‘_’, ‘-’, ‘.’ are recognized as being part of a sort tag when
they appear at the beginning of a filename. This set of characters can
be modified with the ‘filename.sort_tag.extra_chars’ configuration
variable. If defined, the ‘filename.sort_tag.separator’ (by default ‘-’)
marks the end of a sort tag without being part of it. In addition, one
special character ‘filename.sort_tag.extra_separator’ (by default ‘'’)
might be inserted by the filename template directly after the ‘-’ to
avoid ambiguity.

9.7 Customize the filename synchronization scheme

The filename synchronization scheme is fully customizable through
Tp-Note’s filename templates. To design such a custom scheme, start to
set up your synchronization rules in the ‘tmpl.sync_filename’ template.
Then adjust all ‘tmpl.*_filename’ templates to comply with these rules.
In order to verify your design, check that the following holds for any
sequential application of one ‘tmpl.*_filename’ template followed dir‐
ectly by the ‘tmpl.sync_filename’ template: The latter should never
change the filename initially set up by any ‘tmpl.*_filename’ template.

title: some note
file_ext: rst

41/64

Secondly, make sure that in filename templates ‘tmpl.*_filename’, sort-
tags ‘{{ path | file_sort_tag }}’ are never inserted directly. Instead,
prepend the sort_tag with ‘prepend(with_sort_tag=path|
file_sort_tag)’ to the following expression, e.g.:

The filter ‘prepend(with_sort_tag=<...>)’ decides whether to insert the
‘sort_tag.separator="-"’ and/or the ‘sort_tag.extra_separator="'"’
characters. These heuristics enable Tp-Note to identify unequivocally
sort-tags in filenames, which avoids potential cyclic filename change.
Or, in other words: the ‘tmpl.sync_filname’ template must always give
the same result, even after repeated application.

To debug your ‘tmpl.sync_filename’ template, create a test note file
‘test.md’ and invoke Tp-Note with ‘--debug trace’ and ‘--batch’:

9.8 Store new note files by default in a subdirectory

When you are annotating an existing file on disk, the new note file is
placed in the same directory by default. To configure Tp-Note to store
the new note file in a subdirectory, let’s say ‘Notes/’, instead, you need
to modify the templates ‘scheme.tmpl.annotate_file_filename’ and
‘scheme.tmpl.annotate_file_content’:

First, create a configuration file ‘~/.config/tpnote/tpnote.toml’ with:

In the above replace the string ‘COMPLETE HERE’ with the default values
for the variables you obtain with ‘tpnote -C - | less’.

Then, replace in ‘annotate_file_filename’ the string:

{{ fm.fm_title | sanit | prepend(with_sort_tag=path|
file_sort_tag) }}

tpnote --batch --debug trace test.md

[[scheme]]
name = "default"

[scheme.tmpl]
annotate_file_content = """
COMPLETE HERE
"""

annotate_file_filename = """
COMPLETE HERE
"""

42/64

with:

and in ‘annotate_file_content’:

with:

In case you use the ‘zettel’ scheme as well, append the following to
your configuration file and repeat the above.

To test your configuration, place a ‘test.pdf’ file in the current direct‐
ory and annotate that file with:

This should create a new note file ‘./Notes/test.pdf--Note.md and open
your web browser with a link to’test.pdf‘. Clicking on that link, the
PDF page should be shown. The default behaviour, without this cus‐
tomization, is to create the new note file’./test.pdf--Note.md’ in the
current directory.

To test the ‘zettel’ scheme configuration invoke Tp-Note with:

{{ fm.fm_title | sanit | prepend(with_sort_tag=tag) }}\

Notes/{{ fm.fm_title | sanit | prepend(with_sort_tag=tag) }}\

[{{ path | file_name }}](<{{ path | file_name }}>)

[{{ path | file_name }}](<../{{ path | file_name }}>)

[[scheme]]
name = "zettel"

[scheme.tmpl]
annotate_file_content = """
COMPLETE HERE
"""

annotate_file_filename = """
COMPLETE HERE
"""

tpnote test.pdf

tpnote -s zettel test.pdf

43/64

9.9 Customize the built-in note viewer

9.9.1 Change the way how note files are rendered for viewing

Currently, three markup renderers are available: ‘Markdown’,
‘ReStructuredText’ and ‘PlainText’. The configuration file variable
‘filename.extensions’ associates several note file extensions with one
of these markup renderers. In case none of them suit you, it is possible
to disable the viewer feature selectively for one particular note file ex‐
tension by associating it with the pseudo ‘RendererDisabled’ renderer. If
you wish to disable the viewer feature overall (for all file extensions),
set the variable ‘arg_default.edit = true’.

9.9.2 Delay the launch of the web browser

By default, Tp-Note launches two external programs: some text editor
and a web browser. If wished for, the configuration variable
‘viewer.startup_delay’ allows delaying the launch of the web browser
some milliseconds. This way the web browser window will always ap‐
pear on top of the editor window. A negative value delays the start of
the text editor instead.

9.9.3 Change the HTML rendition template

After the markup rendition process, Tp-Note’s built-in viewer gener‐
ates its final HTML rendition through the customizable HTML tem‐
plates ‘tmpl_html.viewer’, ‘tmpl_html.viewer_error’ and
‘tmpl_html.exporter’. Unlike content templates and filename templates,
all HTML templates escape HTML critical characters in variables by de‐
fault. To disable escaping for a specific variable, add the ‘safe’ filter in
last position of the filter chain. Please note, that in general, the ‘safe’
filter is only recommended directly after the ‘to_html’ and the
‘markup_to_html’ filters, because these handle critical input by them‐
selves. The following code example, inspired by the ‘tmpl_html.viewer’
template, illustrates the available variables:

[tmpl_html]
viewer = '''
{%- set ext = fm.fm_file_ext | default(value=extension_default) -

%}
<!DOCTYPE html>
<html lang="{{ fm.fm_lang | default(value='en') }}">
<head>
<meta charset="utf-8">

44/64

Specifically:

‘{{ fm.fm_* }}’ are the deserialized header variables. Note, that the
header variables may be localized, e.g. ‘Untertitel’. Nevertheless,
in templates always use the English version, e.g. ‘fm.fm_subtitle’.
All content template variables and filters are available. See section
Template variables above.

‘{{ viewer_doc_css_path }}’ is the CSS stylesheet path required to
format an HTML rendition of a Tp-Note document. This path is
hard-wired and it is understood by Tp-Note’s internal web server.

‘{{ viewer_highlighting_css_path }}’ is the CSS stylesheet path re‐
quired to highlight embedded source code. This path is hard-wired
and it is understood by Tp-Note’s internal web server.

‘{{ doc_fm_text }}’ is the raw UTF-8 copy of the header. Not to be
confounded with the dictionary variable ‘{{ fm }}’.

‘{{ doc_body_text | markup_to_html(extension=ext) | safe }}’ is
the note’s body as HTML rendition. The parameter ‘extension’ des‐
ignates the markup language as specified in the
‘filename.extensions-*’ variables.

‘{{ doc_text | markup_to_html | safe }}’ is the note’s raw text as
HTML rendition with clickable hyperlinks.

‘{{ viewer_doc_js | safe }}’ is the JavaScript browser code for live
updates.

‘{{ extension_default }}’ (c.f. section Template variables).

<title>{{ fm.fm_title }}</title>
<link rel="stylesheet" href="{{ viewer_doc_css_path }}">
<link rel="stylesheet" href="{{ viewer_highlighting_css_path }}">
 </head>
 <body>
 <pre class="doc-header">{{ doc_fm_text }}</pre>
 <hr>
 <div class="doc-body">
 {{ doc_body_text | markup_to_html(extension=ext) | safe }}
 </div>
 <script>{{ viewer_doc_js | safe }}</script>
</body>
</html>
'''

•

•

•

•

•

•

•

•

45/64

‘{{ username }}’ (c.f. section Template variables).

‘{{ lang }}’ (c.f. section Template variables).

‘{{ my_val | to_html | safe }}’ is the HTML rendition of the
‘my_val’ variable (c.f. section Template filter).

‘{{'fm.fm_title' | name}}’ prints the localized name of the
‘fm.fm_title’ variable, e.g. ‘title’ in English or ‘Titel’ in German.

Alternatively, the header enclosed by ‘<pre>...</pre>’ can also be
rendered as a table:

The error page template ‘tmpl_html.viewer_error’ (see below) does not
provide ‘fm.fm_*’ variables, because of possible header syntax errors.
Instead, the variable ‘{{ doc_error }}’ contains the error message as
raw UTF-8 and the variable ‘{{ doc_text | markup_to_html | safe }}’
the HTML rendition of the text source with clickable hyperlinks:

•

•

•

•

<table class="fm">
<tr>
<th class="fmkey">{{'fm.fm_title' | name}}:</th>
<th class="fmval">

 {{ fm.fm_title| default(value='') | to_html | safe }}
</th>

</tr>
<tr>
<th class="fmkey">{{'fm.fm_subtitle' | name}}:</th>
<th class="fmval">

 {{ fm.fm_subtitle | default(value='') | to_html | safe }}
</th>

</tr>
 {% for k, v in fm | remove(key='fm_title')|
 remove(key='fm_subtitle')|
 %}

<tr>
<th class="fmkeygrey">{{ k | name }}:</th>
<th class="fmvalgrey">{{ v | to_html | safe }}</th>

</tr>
 {% endfor %}

</table>

[tmpl_html]
viewer_error = '''
<!DOCTYPE html>
<html lang=\"en\">

46/64

9.9.4 Customize the built-in HTML exporter

Customizing Tp-Note’s HTML export function works the same way as
customizing the built-in viewer. There are some slight differences
though: The role of the ‘tmpl_html.viewer’ template - discussed above -
is taken over by the ‘tmpl_html.exporter’ template:

<head>
<meta charset=\"UTF-8\">
<title>Syntax error</title>
</head>
<body>
<h3>Syntax error</h3>
<p> in note file: <pre>{{ path }}</pre><p>
<div class=\"note-error\">
<hr>
<pre>{{ doc_error }}</pre>
<hr>
</div>
{{ doc_text | markup_to_html | safe }}
<script>{{ viewer_doc_js | safe }}</script>
</body>
</html>
'''

[tmpl_html]
exporter = '''
{%- set ext = fm.fm_file_ext | default(value=extension_default) -

%}
<!DOCTYPE html>
<html lang="{{ fm.fm_lang | default(value='en') }}">
<head>
<meta charset="utf-8">
<title>{{ fm.fm_title }}</title>
<style>
{{ exporter_doc_css | safe }}
{{ exporter_highlighting_css | safe }}
</style>
</head>
<body>
 <pre class="doc-header">{{ doc_fm_text }}</pre>
 <hr>
 <div class="doc-body">
 {{ doc_body_text| markup_to_html(extension=ext) | safe }}

47/64

In this template the same Tera variables as in ‘tmpl_html.viewer’ are
available, with one exception ‘{{ note_js }}’, which does not make
sense in this context. As the exporter prints possible rendition error
messages on the console, there is no equivalent to the
‘tmpl_html.viewer_error’ template. Note, in contrast to the previous
‘tmpl_html.viewer’ example, the source code highlighting CSS code is
now embedded into the HTML output with:

Note, the ‘safe’ filter disables the escaping of critical characters in the
CSS input. We have no security concerns in this context, because we
have full control over the CCS input coming from the configuration file
variables ‘tmpl_html.exporter_doc_css’ and
‘tmpl_html.exporter_highlighting_theme’.

9.10 Choose your favourite web browser as note viewer

Once the note is rendered into HTML, Tp-Note’s internal HTTP server
connects to a random port at the ‘localhost’ interface where the rendi‐
tion is served to be viewed with a web browser. Tp-Note’s configuration
file contains a list ‘app_args.unix.browser’ with common web browsers
and their usual location on Unix like operating systems. For other sys‐
tems consult ‘app_args.windows.browser’ and ‘app_args.macos.browser’.
This list is executed top down until a web browser is found and
launched. If you want to view your notes with a different web browser,
simply overwrite the internal ‘app_args.unix.browser’ list and put your
favourite web browser on top.

Alternatively, you can set the ‘TPNOTE_BROWSER’ environment variable
(cf. examples in the chapter ENVIRONMENT_VARIABLES below).

In case none of the listed browsers can be found, Tp-Note switches into
a fallback mode with limited functionality, where it tries to open the
system’s default web browser. A disadvantage is, that in fall back mode

 </div>
</body>
</html>
'''

<style>
{{ exporter_doc_css | safe }}
{{ exporter_highlighting_css | safe }}
</style>

[app_args]
unix.browser = [["chromium", "--new-window", "--incognito"]]

48/64

Tp-Note is not able to detect when the user closes the web browser.
This might lead to situations, where Tp-Note’s internal HTTP server
shuts down to early. In order to check if Tp-Note finds the selected web
browser as intended, invoke Tp-Note with ‘tpnote --debug debug --
popup --view’.

10 TEMPLATES

All TP-Note’s workflows are customizable through its templates which
are grouped in the ‘[scheme.tmpl]’ and in the ‘[scheme.tmpl_html]’ sec‐
tion of Tp-Note’s configuration file. This chapter deals with
‘[scheme.tmpl]’ templates which are responsible for generating Tp-Note
files. ‘[scheme.tmpl_html]’ templates concern only Tp-Note’s viewer fea‐
ture and are discussed in the chapters: Customize the built-in note
viewer_ and Choose your favourite web browser as note viewer.

Tp-Note captures and stores its environment in Tera variables. For ex‐
ample, the variable ‘{{ dir_path }}’ is initialized with the note’s target
directory. The variable ‘{{ clipboard }}’ contains the content of the
clipboard. To learn more about Tera variables, launch Tp-Note with the
‘--debug trace’ option and observe what information it captures from
its environment.

10.1 Template types

The content of a new note is composed by one of Tp-Note’s internal
customizable templates, hence the name Tp-Note, where Tp stands for
“template”. Which of the internal templates is applied depends on the
context in which Tp-Note is invoked: e.g. the template for clipboard
text input is called ‘tmpl.from_clipboard_content’. If the clipboard con‐
tains text with a YAML header, the template
‘tmpl.from_clipboard_yaml_content’ is used.

In total, there are 5 different ‘tmpl.*_content’ templates:

‘tmpl.from_dir_content’
‘tmpl.from_clipboard_content’
‘tmpl.from_clipboard_yaml_content’
‘tmpl.from_text_file_content’
‘tmpl.annotate_file_content’

•
•
•
•
•

49/64

In general, the templates are designed in a way, that the text input
stream - usually originating from the clipboard - ends up in the body of
the note file, whereas the environment - such as the username - ends
up in the header of the note file.

Once the content of the new note is set by one of the content templates,
another template type comes into play: the so-called filename template.
Each content template has a corresponding filename template, e.g.:

‘tmpl.from_dir_filename’
‘tmpl.from_clipboard_filename’
‘tmpl.from_clipboard_yaml_filename’
‘tmpl.from_text_file_filename’
‘tmpl.annotate_file_filename’
‘tmpl.sync_filename’ (no corresponding content template)

As the name suggests, the role of a filename template is to determine
the filename of the new note. This is done by evaluating (deserializing)
it’s YAML header. The values of the note’s YAML header fields are can
be accessed in filename templates through various ‘{{ fm.fm_<key> }}’
dynamically created template variables. For example the value of the
YAML header field ‘title:’ can be accessed with ‘{{ fm.fm_title }}’.
Once the filename is set, Tp-Note writes out the new note on disk.

Most of the above templates are dedicated to the creation of new note
files. However, two of them have a special role: prepend header to text
file and synchronize filename:

Prepend header to text file (new feature in Tp-Note v1.16.0): When
Tp-Note opens a regular text file without a YAML header, a new
header is prepended automatically. It’s data originates mainly form
the filename of the text file. The templates applied in this use case
are: ‘tmpl.from_text_file_content’ and
‘tmpl.from_text_file_filename’.

Synchronize filename: This function mode is invoked when [Tp-
Note] opens an existing note file, after it’s YAML header is evalu‐
ated. The extracted header information is then applied to the
‘tmpl.sync_filename’ template and the resulting filename is com‐
pared with the actual filename on disk. If they differ, [Tp-Note] re‐
names the note file. Note, the ‘tmpl.sync_filename’ template oper‐
ates on its own without a corresponding content template.

Note, that in the operation mode synchronize filename, the header data
overwrites the filename of the note, whereas in the operation mode
prepend header the filename data is copied into the new prepended

•
•
•
•
•
•

•

•

50/64

header. Keep in mind, that even in the latter mode the filename might
change slightly. This is because after the header creation with the
‘tmpl.from_text_file_content’ template, the
‘tmpl.from_text_file_filename’ template is applied, which might cause
a slight filename modification due to its sanitization filters (cf. ‘sanit()’
in the section Template filters).

You can disable the prepend header feature by setting the configuration
file variable ‘arg_default.add_header = false’. To disable all filename
synchronization, set ‘arg_default.no_filename_sync = true’. This guar‐
antees, that Tp-Note will never change neither the filename nor the
YAML header of an existing file.

For a more detailed description of templates and their defaults, please
consult the ‘const’ definitions in Tp-Note’s source code files ‘config.rs’
and ‘note.rs’ in the directory ‘tpnote-lib/src/’.

10.2 Template variables

All Tera template variables and functions can be used within Tp-Note’s
templates. For example ‘{{ get_env(name='LANG') }}' gives you access
to the’LANG’ environment variable.

In addition, Tp-Note defines the following variables:

‘{{ path }}’ is the canonicalized fully qualified path name corres‐
ponding to Tp-Note’s positional command line parameter ‘<path>’. If
none was given on the command line, ‘{{ path }}’ contains the cur‐
rent working directory path.

‘{{ dir_path }}’ is identical to ‘{{ path }}’ with one exception: if
‘{{ path }}’ points to a file, the last component (the file name) is
omitted and only the directory path is retained. If ‘{{ path }}’
points to a directory, ‘{{ dir_path }}’ equals ‘{{ path }}’.

‘{{ doc_fm_text }}’: is the header as raw text of the file ‘{{ path }}’
points to. Note, this variable is only available in the templates
‘from_text_file_*’, ‘sync_filename’ and the HTML templates below.

‘{{ doc_body_text }}’: is the content of the file ‘{{ path }}’ points
to. If the file does not start with a front matter, this variable holds
the whole content. Note, this variable is only available in the tem‐
plates ‘from_text_file_*’, ‘sync_filename’ and the HTML templates
below.

•

•

•

•

51/64

https://tera.netlify.com/%20docs/#templates

‘{{ doc_file_date }}’: is the file system creation date of the file
‘{{ path }}’ points to. This variable is only available in the tem‐
plates ‘from_text_file_*’, ‘sync_filename’ and in HTML templates.
This condition implies, that ‘{{ path }}’ points to a file. Note: on
some platforms and with some filesystems, the variable
‘{{ doc_file_date }}’ might not be defined.

‘{{ txt_clipboard }}’ is the complete ‘plain/text’ clipboard text. In
case the clipboard’s content starts with a YAML header, only the
non YAML content is retained.

‘{{ txt_clipboard_header }}’ is the YAML header section of the clip‐
board data, if it exists. If not, the variable is empty.

‘{{ html_clipboard }}’ and ‘{{ html_clipboard_header }}’ contain
the same text as their ‘txt_clipboard_*’ counterparts, but as HTML.
This way you can copy the destination of hyperlinks in addition to
their link text.

‘{{ stdin }}’ is the complete text content originating from the input
stream ‘stdin’. This stream can replace the clipboard when it is not
available. In case the input stream’s content starts with a YAML
header, the latter does not appear in this variable.

‘{{ stdin_header }}’ is the YAML section of the input stream, if one
exists. Otherwise: empty string.

‘{{ extension_default }}’ is the default extension for new notes
(can be changed in the configuration file),

‘{{ username }}’ is the content of the first non-empty environment
variable: ‘TPNOTE_USER’, ‘LOGNAME’, ‘USER’ or ‘USERNAME’.

‘{{ lang }}’ contains the user’s language tag as defined in RFC 5646.
Not to be confused with the UNIX ‘LANG’ environment variable from
which this value is derived under Linux/macOS. Under Windows,
the user’s language tag is queried through the WinAPI. If defined,
the environment variable ‘TPNOTE_LANG’ overwrites the value of
‘{{ lang }}’ (all operating systems).

The following ‘{{ fm.fm_* }}’ variables are typically generated, after a
content template was filled in with data: For example a field named
‘title:’ in the content template ‘tmpl.from_dir_content’ will generate
the variable ‘fm.fm_title’ which can then be used in the corresponding
‘tmpl.from_dir_filename’ filename template. ‘{{ fm.fm_* }}’ variables
are generated dynamically. This means, a YAML front-matter variable
‘foo:’ in a note will generate a ‘{{ fm.fm_foo }}’ template variable. On

•

•

•

•

•

•

•

•

•

52/64

http://www.rfc-editor.org/rfc/rfc5646.txt

the other hand, a missing ‘foo:’ will cause ‘{{ fm.fm_foo }}’ to be un‐
defined. Please note, that the header variables may be localized,
e.g. ‘Untertitel:’. Nevertheless, in templates always use the English
version, e.g. ‘fm.fm_subtitle’.

It is to be observed that ‘{{ fm.fm_* }}’ variables are only available in
filename templates and in the ‘tmpl.from_clipboard_yaml_content’ con‐
tent template.

‘{{ fm.fm_title }}’ is the ‘title:’ as indicated in the YAML front-
matter of the note.

‘{{ fm.fm_subtitle }}’ is the ‘subtitle:’ as indicated in the YAML
front matter of the note.

‘{{ fm.fm_author }}’ is the ‘author:’ as indicated in the YAML front-
matter of the note.

‘{{ fm.fm_lang }}’ is the ‘lang:’ as indicated in the YAML front-mat‐
ter of the note.

‘{{ fm.fm_file_ext }}’ holds the value of the optional YAML header
variable ‘file_ext:’ (e.g. ‘file_ext: rst’).

‘{{ fm.fm_sort_tag }}’: The sort tag variable as defined in the
YAML front matter of this note (e.g. ‘sort_tag: '20200312'’).

‘{{ fm }}’: is a collection (map) of all defined ‘{{ fm.fm_* }}’ vari‐
ables. It is used in the ‘tmpl.from_clipboard_yaml_content’ template,
typically in a loop like:

Important: there is no guarantee, that any of the above ‘{{ fm.fm_* }}’
variables are defined! Depending on the last content template result,
certain variables might be undefined. Please take into consideration,
that a defined variable might contain the empty string ‘""’. Creating a
new note file with a content template, the note’s header is parsed into
‘{{ fm.fm_* }}’ variables. The latter are then type checked according
configurable rules. The rules are defined in
‘tmpl.filter.assert_precondition’

For a more detailed description of the available template variables,
please consult the ‘const’ definitions in Tp-Note’s source code file
‘note.rs’.

•

•

•

•

•

•

•

{% for key, value in fm %}{{ key }}: {{ value | json_encode }}
{% endfor %}

53/64

10.3 Template filters

In addition to Tera’s built-in filters, Tp-Note comes with some addition‐
al filters, i.e.: ‘append(newline=true)’, ‘append(with=...)’, ‘cut’,
‘file_copy_counter’, ‘file_ext’, ‘file_name’, ‘file_sort_tag’, ‘file_stem’,
‘get_lang’, ‘heading’, ‘html_to_markup(extension=..., default=...)’,
‘insert(key=..., value=...)’, ‘link_dest’, ‘link_text’, ‘link_title’,
‘map_lang’, ‘prepend’, ‘prepend(newline=true)’, ‘prepend(with=...)’,
‘prepend(with_sort_tag=...)’, ‘remove(key=)’ ‘sanit’, ‘to_html’, ‘to_yaml’,
‘to_yaml(key=...)’, ‘to_yaml(tab=...)’ and ‘trim_file_sort_tag’.

A filter is always used together with a variable. Here are some ex‐
amples:

‘{{ path | file_name }}’ returns the final component of
‘{{ path }}’. If ‘{{ path }}’ points to a file, the filter returns the
complete filename including its sort tag, stem, copy-counter, dot
and extension. If the ‘<path>’ points to a directory, the filter returns
the final directory name.

‘{{ path | file_sort_tag }}’ is the sort tag (numerical filename
prefix) of the final component of ‘{{ path }}’, e.g. ‘01-23_9’ or
‘20191022’. It is similar to ‘{{ path | file_name }}’ but without re‐
turning its stem, copy-counter and extension.

‘{{ path | file_sort_tag | assert_valid_sort_tag }}’ does not
change the above output, but the filter asserts at runtime, that the
resulting type is either ‘String’ or ‘Number’ and that all characters
are part of the set ‘filename.sort_tag.extra_chars’. The additional
runtime check simplifies template debugging.

‘{{ path | file_stem }}’ is similar to ‘{{ path | file_name }}’ but
without its sort tag, copy-counter and extension. Only the stem of
‘{{ path }}’’s last component is returned.

‘{{ path | file_copy_counter }}’ is similar to ‘{{ path |
 file_name }}’ but without its sort tag, stem and extension. Only the
copy counter of ‘{{ path }}’’s last component is returned.

‘{{ path | file_ext }}’ is ‘{{ path }}’’s file extension without dot
(period), e.g. ‘txt’ or ‘md’.

‘{{ path | file_ext | prepend(with='.') }}’ is ‘{{ path }}’’s file
extension with dot (period), e.g. ‘.txt’ or ‘.md’.

•

•

•

•

•

•

•

54/64

https://tera.netlify.app/docs/#built-in-filters

‘{{ path | trim_file_sort_tag }}’ returns the final component of
‘path’ which might be a directory name or a file name. Unlike the
‘file_name’ filter (which also returns the final component),
‘trim_file_sort_tag’ trims the sort tag if there is one.

‘{{ dir_path | find_last_created_file |
incr_sort_tag(default="") }}’ searches ‘dir_path’ for the most re‐
cently created Tp-Note file, extracts the sort-tag from this file, incre‐
ments the sort-tag and returns the result. If the incrementation
fails, the ‘default’ value is returned. This can happen, when the in‐
put sort-tag contains characters of the set
‘tmpl.filter.incr_sort_tag.default_if_contains’. Or, if the to be in‐
cremented counter (a sequential sort-tag usually has more than one
counter) has more than
‘tmpl.filter.incr_sort_tag.default_if_greater’ digits.

‘{{ dir_path | trim_file_sort_tag }}’ returns the final component
of ‘dir_path’ (which is the final directory name in ‘{{ path }}’). Un‐
like the ‘file_name’ filter (which also returns the final component),
‘trim_file_sort_tag’ trims the sort tag if there is one.

‘{{ html_clipboard | html_to_markup(extension=e, default=d) }}’
converts the clipboard’s HTML content into the target markup lan‐
guage specified by ‘e’. If the conversion fails or results in an empty
string, stream the text ‘d’ instead.

‘{{ txt_clipboard | cut }}’ is the first 200 bytes from the clip‐
board.

‘{{ html_clipboard | heading }}’ is the clipboard’s content until the
end of the first sentence, or the first newline.

‘{{ html_clipboard | link_text }}’ is the name of the first Mark‐
down or ReStructuredText formatted link in the clipboard.

‘{{ html_clipboard | link_dest }}’ is the URL of the first Mark‐
down or ReStruncturedText formatted link in the clipboard.

‘{{ html_clipboard | link_title }}’ is the title of the first Mark‐
down or ReStruncturedText formatted link in the clipboard.

‘{{ username | capitalize | to_yaml(key='author',tab=12) }}’ is
the capitalized YAML encoded username. As all YAML front-matter
is YAML encoded, the ‘to_yaml’ filter must be appended to any tem‐
plate variable placed in the front-matter block. The ‘key='author'’

•

•

•

•

•

•

•

•

•

•

55/64

parameter prepends the key to the capitalized username, e.g.:
‘autor: John’. Note, the first letter of ‘John’ starts at the tabulat‐
or position ‘tab=12’.

‘{{ fm.fm_subtitle | sanit }}’ is the note’s subtitle as defined in its
front matter, sanitized in a file system friendly form. Special char‐
acters are omitted or replaced by ‘-’ and ‘_’. See the section File‐
name template convention for more details about this filter.

‘{{ fm.fm_title | sanit | prepend(with_sort_tag=path|
file_sort_tag) }}’ is the note’s title as defined in its front-matter.
Same as above, but the title string is prepended with the note’s
sort_tag and with a ‘filename.sort_tag.separator’ (by default ‘-’).
Eventually, a second ‘filename.sort_tag.extra_separator’ (by de‐
fault ‘''’) is inserted after the first to guarantee, that one of the sep‐
arators unequivocally marks the end of the sort_tag. This might be
necessary to avoid ambiguity in case the ‘fm.fm_title’ starts with a
character defined in the ‘filename.sort_tag.extra_chars’ set.

‘{{ fm | remove(key='fm_title') | remove(key='fm_author') |
to_yaml }}’ renders the collection (map) ‘fm’, exclusive of the vari‐
ables ‘fm.fm_title’ and ‘fm.fm_author’ to YAML. Note, that the filter
‘to_yaml’ has no parameter ‘key’ in this context.

‘{{ fm | insert(key='fm_author', value='Getreu') | to_yaml}}’
takes the collection (map) ‘fm’, inserts the key/value
‘fm_author’/‘Jens’ and renders the result into YAML. Note, that the
filter ‘to_yaml’ has no parameter ‘key’ in this context.

‘{{ fm | to_yaml | append(newline=true) }}’ renders the collection
(map) ‘fm’ into YAML. If the collection is empty, the result is the
empty string. Otherwise, the YAML rendition is appended with a
newline character.

‘{{ fm | to_html | safe }}’ renders the collection (map) ‘fm.fm_*’
into HTML. The ‘to_html’ must be followed by a ‘safe’ filter to pass
through the HTML formatting of objects and arrays.

‘{{ doc_body_text | get_lang }}’ determines the natural language
of the variable ‘{{ doc_body_text }} and returns the result as ISO
639-1 language code. The template filter’{{ get_lang }}’ can be
configured with the configuration file variable
‘tmpl.filter.get_lang’. The latter defines a list of ISO 639-1 codes,
the detection algorithm considers as possible language candidates.
Keep this list as small as possible, because language detection is
computationally expensive. A long candidate list may slow down

•

•

•

•

•

•

•

56/64

the note file creation workflow. If the detection algorithm can not
determine the language of ‘{{ doc_body_text }}’, the filter
‘{{ get_lang }}’ returns an empty string.

‘{{ doc_body_text | get_lang | map_lang }}’ maps the detected ISO
638-1 language code to a complete IETF BCP 47 language tag, usu‐
ally containing the region subtag. For example the input ‘en’ results
in ‘en-US’. This additional mapping is useful because the detection
algorithm can not determine the region automatically. The map‐
ping can be configured by adjusting the configuration file variable
‘tmpl.filter.map_lang’. If a language is not listed in the
‘tmpl.filter.map_lang’ filter configuration, the input is passed
through, e.g. ‘fr’ results in ‘fr’, or, the empty string results in an
empty string.

‘{{ doc_body_text | get_lang | map_lang(default=lang) }}’ adds
an extra mapping for the ‘map_lang’ filter: when the input of the
‘map_lang’ filter is the empty string, then it’s output becomes the
value of the ‘{{ lang }}’ variable.

‘{{ doc_file_date | default(value=now()) |
date(format='%Y%m%d') }}’ Returns the formatted date of the file
‘{{ path }}’ points to. Defaults to the current date in cases
‘{{ doc_file_date }}’ is not defined (see Template variables sec‐
tion).

10.4 Content template conventions

Tp-Note distinguishes two template types: content templates are used
to create the note’s content (front-matter and body) and the corres‐
ponding filename templates ‘tmpl.*_filename’ are used to calculate the
note’s filename. By convention, content templates appear in the config‐
uration file in variables named ‘tmpl.*_content’.

Strings in the front matter section of content templates are YAML en‐
coded. Therefore, all variables used in the front-matter must pass an
additional ‘to_yaml()’-filter. For example, the variable ‘{{ dir_path |
file_stem() }}’ becomes ‘{{ dir_path | file_stem() |
to_yaml(key='title') }}’ or, shorter: ‘{{ dir_path | file_stem |
to_yaml(key='title') }}’.

When given with a key, the ‘to_yaml(key='...')’ filter accepts any in‐
put type, whereas the short form ‘to_yaml()’ requires an
‘Value::Object’ type as input. The latter is often followed be the
‘append(newline=true)’ filter appending a newline.

•

•

•

57/64

10.5 Filename template conventions

By convention, filename templates appear in the configuration file in
variables named ‘tmpl.*_filename’. When a content template creates a
new note, the corresponding filename template is called afterwards to
calculate the filename of the new note. Please note that, the filename
template ‘tmpl.sync_filename’ has a special role as it synchronizes the
filename of existing note files. Besides this, as we are dealing with file‐
names we must guarantee, that the filename templates produce only
file system friendly characters. For this purpose Tp-Note provides the
additional Tera filter ‘sanit’:

The ‘sanit()’ filter transforms a string in a file system friendly from.
This is done by replacing forbidden characters like ‘?’ and ‘\\’ with ‘_’
or space. This filter can be used with any variable, but is most useful
with filename templates. For example, in the ‘tmpl.sync_filename’ tem‐
plate, we find the expression ‘{{ subtitle | sanit }}’. Note that the fil‐
ter recognizes strings that represent a so-called dot file name and
treats them a little differently by prepending them with an apostrophe:
a dot file is a file whose name starts with ‘.’ and that does not contain
whitespace. It may or may not end with a file extension. The apo‐
strophe preserves the following dot from being filtered.

The ‘prepend(with_sort_tag=<...>’ filter is similar to the
‘prepend(with=<...>’ filter, with two exceptions:

If ‘filename.sort_tag.separator’ is defined (by default ‘-’), it is auto‐
matically inserted between the sort-tag and the input string.
In some cases an additional separator
‘filename.sort_tag.extra_separator’ (by default ‘'’) may be inserted
as well.

Both separators guarantee that the end of a sort-tag is detected unequi‐
vocally. For example, when the input string starts with a digit
‘0123456789’ or ‘-_’, the string is prepended with -', e.g. ‘1-The Show
Begins’ becomes ‘'1-The Show Begins’. The
‘prepend(with_sort_tag=<...>)’ filter must be applied to the first vari‐
able, e.g. ‘{{ fm.fm_title | sanit | prepend(with_separator=path|
file_sort_tag)}’. This way, it is always possible to univocally distin‐
guish the sort-tag from the rest of the filename. Note, the default sort-
tag separators can be changed with the configuration variables
‘filename.sort_tag.separator’ and
‘filename.sort_tag.extra_separator’. For more details please consult
the Customize the filename synchronization scheme chapter.

1.

2.

58/64

In filename templates most variables must pass the ‘sanit’ filter. Excep‐
tion to this rule are sort-tag expressions like ‘{{ path |
file_sort_tag }}’ and ‘{{ dir_path | file_sort_tag }}’. As the latter
are guaranteed to contain only the file system friendly characters
‘0123456789 -_’, no additional filtering is required. Please note, that in
this case a ‘sanit’-filter would needlessly restrict the value range of
sort-tags because they may contain characters, which the ‘sanit’-filter
screens out when they appear in leading or trailing position. For this
reason one must not use the ‘sanit’-filter together with ‘{{ path |
file_sort_tag }}’ or ‘{{ dir_path |file_sort_tag }}’.

11 SECURITY AND PRIVACY CONSIDERATIONS

As discussed above, Tp-Note’s built-in viewer sets up an HTTP server
on the ‘localhost’ interface with a random port number.

For security reasons, Tp-Note limits the set of files the viewer is able to
publish. To summarize, a file is only served:

When it is referenced in one of the currently viewed Tp-Note files,
when its file extension is registered with the
‘viewer.served_mime_type’ list,
if the number of so far viewed Tp-Note files,
‘viewer.displayed_tpnote_count_max’ is not exceeded,
when it’s located under a directory containing a marker file named
‘.tpnote.toml’ (without marker file this condition is void).

The HTTP server runs as long as the launched web browser window is
open. Note, that the server not only exposes the displayed note file, but
also all referenced inline images and other linked TP-Note files. Intern‐
ally, the viewer maintains a list of referenced local URLs. For security
reasons, only listed files are served. To limit data exfiltration in case an
attacker gains access to an account on your machine, the number of
served Tp-Note files is limited by the configurable value
‘viewer.displayed_tpnote_count_max’.

In addition to the above quantitative restriction, Tp-Note’s built-in
viewer serves only files whose file extensions are registered with the
‘viewer.served_mime_type’ configuration file variable. The latter allows
disabling the follow links to other Tp-Note files feature by removing all
‘text/*’ mime types from that list.

Another security feature is the ‘.tpnote.toml’ marker file. When Tp-
Note opens a note file, it checks all directories above, one by one, until
it finds the marker file ‘.tpnote.toml’. Tp-Note’s viewer will never serve

1.
2.

3.

4.

59/64

a file located outside the root directory and its children. When no
‘.tpnote.toml’ file is found, the root directory is set to ‘/’, which dis‐
ables this security feature.

As Tp-Note’s built-in viewer binds to the ‘localhost’ interface, the ex‐
posed files are in principle accessible to all processes running on the
computer. As long as only one user is logged into the computer at a giv‐
en time, no privacy concern is raised: any potential attacker must be
logged in, in order to access the localhost HTTP server.

This is why on systems where multiple users are logged in at the same
time, it is recommended to disable Tp-Note’s internal HTTP server by
setting the configuration file variable ‘arg_default.edit = true’. Al‐
ternatively, you can also compile Tp-Note without the ‘viewer’ feature.
Note, that even if the viewer feature disabled, the ‘--export’ command
line option still works: This allows the authorized user to render the
note to HTML manually.

Summary: As long as Tp-Note’s built-in note viewer is running, the
note file and all its referenced (image) files are exposed to all users
logged into the computer at that given time. This concerns only local
users, Tp-Note never exposes any information to the network or on the
Internet.

12 ENVIRONMENT VARIABLES

LANG

Tp-Note stores the user’s locale settings - originating from the en‐
vironment variable ‘LANG’ (or the Windows registry) - in the tem‐
plate variable ‘{{ lang }}’. When the environment variable
‘TPNOTE_LANG’ is set, it overwrites the locale setting stored in
‘{{ lang }}’. ‘man locale’ describes the data format of ‘LANG’, a
typical value is ‘en_GB.UTF-8’.

TPNOTE_CONFIG

When set, the environment variable replaces the default path
where Tp-Note loads or stores its configuration file. It has the
same effect as the command line option ‘--config’. If both are
present, that latter takes precedence.

TPNOTE_LANG

60/64

Tp-Note stores the user’s locale settings - originating from the en‐
vironment variable ‘LANG’ (or the Windows registry) - in the tem‐
plate variable ‘{{ lang }}’. When the environment variable
‘TPNOTE_LANG’ is set, it overwrites the locale setting stored in
‘{{ lang }}’. Unlike ‘LANG’, the environment variable ‘TPNOTE_LANG’
is encoded as IETF BCP 47 language tag, e.g. ‘en-US’.

TPNOTE_LANG_DETECTION

If set, this variable overwrites the configuration file variables
‘tmpl.filter.get_lang’ and ‘tmpl.filter.map_lang’, thus selecting
potential language candidates for Tp-Note’s natural language de‐
tection. The string contains a comma and space separated list of
ISO 63901 codes, e.g. ‘fr’ or IETF BCP 47 tags, e.g. ‘fr-FR’. Here is
an example of a complete string: ‘de-DE, en, fr-FR, hu’. The
user’s default locale ‘{{ lang }}’ is automatically added to the
list. Note, that the language detection algorithm determines only
the language subtag, e.g. ‘en’. The region subtag will be added as
indicated in your configuration. Subsequent entries that differ
only in the region subtag, e.g. ‘en-GB, en-US’ are ignored.

The empty string disables the automatic language detection.

For debugging observe the value of ‘SETTINGS’ in the debug log:

TPNOTE_BROWSER

If set, this variable take precedence over the configuration file
variable ‘app_args.browser’. While the latter is a list describing
how to invoke various web browsers, ‘TPNOTE_BROWSER’ contains a
string invoking one particular browser, exactly as one would do
in a shell: the whitespace separated tokens list contains: the path
name of the application, and all its flags and options. For ex‐
ample:

The above instructs Tp-Note to start the web browser ‘chromium’
with the flags ‘--new-window’ and ‘--incognito’. Unlike in a shell,
the backslash and quote characters have no special meaning. In‐
stead, all tokens are percent encoded, e.g. ‘my path’ becomes
‘my%20path’.

TPNOTE_LANG_DETECTION="" tpnote

TPNOTE_LANG_DETECTION="de-DE, en, fr-FR" tpnote -d trace -b

TPNOTE_BROWSER="chromium --new-window --incognito" tpnote

61/64

The empty string disables the launch of the browser the same
way as ‘--edit’:

is equivalent to:

TPNOTE_EDITOR

If set, and you are working on a graphical desktop, this variable
takes precedence over the configuration file variable
‘app_args.editor’. While the latter is a list describing how to in‐
voke various file editors, ‘TPNOTE_EDITOR’ contains a string invok‐
ing one particular file editor, exactly as one would do on a shell:
the whitespace separated tokens list contains: the path name of
the application, and all its flags and options. For example:

The above instructs Tp-Note to start the editor ‘geany’ with the
flags ‘-sim’. Unlike with shell tokens, the backslash and quote
characters have no special meaning. Instead, all tokens are per‐
cent encoded. Consider the following example where the space
character is expressed as ‘%20’:

The empty string disables the launch of the editor the same way
as the command line option ‘--view’ does:

is equivalent to:

TPNOTE_EDITOR_CONSOLE

If set, and you are working on a virtual console, this variable
takes precedence over the configuration file variable
‘app_args.editor_console’, which defines the command line para‐
meters for invoking a terminal based text editor, such as Emacs,
Vim or Helix. Otherwise, the syntax and the operation are the
same as with ‘TPNOTE_EDITOR hereinabove’. Example of use:

TPNOTE_BROWSER="" tpnote

tpnote --edit

TPNOTE_EDITOR="geany -sim" tpnote

TPNOTE_EDITOR="geany -sim -c ~/my%20config/" tpnote

TPNOTE_EDITOR="" tpnote

tpnote --view

sudo TPNOTE_EDITOR_CONSOLE="nvim" tpnote

62/64

TPNOTE_EXTENSION_DEFAULT

If set, this variable takes precedence over the configuration file
variable ‘filename.extension_default’, which defines the file ex‐
tension of new note files. In order to activate the appropriate
markup renderer make sure, that the value given here is listed in
‘filename.extensions’.

TPNOTE_SCHEME

If set, this variable takes precedence over the configuration file
variable ‘arg_default.scheme’, which defines the scheme used
when creating new note file.

TPNOTE_USER, LOGNAME, USER, USERNAME

The template variable ‘{{ username }}’ is the content of the first
non-empty environment variable: ‘TPNOTE_USER’, ‘LOGNAME’, ‘USER’
or ‘USERNAME’.

13 EXIT STATUS

The exit status is ‘0’ when the note file was processed without error or
‘1’ otherwise. If Tp-Note can not read or write its configuration file, the
exit status is ‘5’.

When ‘tpnote -n -b <FILE>’ returns the code ‘0’, the note file has a val‐
id YAML header with a ‘title:’ field. In addition, when ‘tpnote -n -b -
x - <FILE>’ returns the code ‘0’, the note’s body was rendered without
error.

14 RESOURCES

Tp-Note it hosted on:

Gitlab: https://gitlab.com/getreu/tp-note.

Github (mirror): https://github.com/getreu/tp-note and on

15 COPYING

Copyright (C) 2016-2024 Jens Getreu

•

•

63/64

https://gitlab.com/getreu/tp-note
https://github.com/getreu/tp-note

Licensed under either of

Apache Licence, Version 2.0 http://www.apache.org/licenses/LI‐
CENSE-2.0
MIT licence http://opensource.org/licenses/MIT

at your option.

15.1 Contribution

Unless you explicitly state otherwise, any contribution intentionally
submitted for inclusion in the work by you, as defined in the
Apache-2.0 licence, shall be dual licensed as above, without any addi‐
tional terms or conditions. Licensed under the Apache Licence, Version
2.0 (the “Licence”); you may not use this file except in compliance with
the Licence.

16 AUTHORS

Jens Getreu getreu@web.de

The variables ‘{{ fm.fm_title }}’ and ‘{{ fm.fm_subtitle }}’ reflect
the values in the note’s front matter.↩

•

•

1.

64/64

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://opensource.org/licenses/MIT
mailto:getreu@web.de

	TP-NOTE(1) Version 1.24.8 | Tp-Note documentation
	1 NAME
	2 SYNOPSIS
	3 DESCRIPTION
	4 CREATING NOTE FILES
	4.1 Create a new note with empty clipboard
	4.2 Create a new note based on clipboard data
	4.2.1 The clipboard contains a string
	4.2.2 The clipboard contains a hyperlink
	4.2.3 The clipboard contains a string with a YAML header

	4.3 Create a new note annotating a non Tp-Note file
	4.4 Convert a text file into a Tp-Note file
	4.5 Use Tp-Note in shell scripts

	5 NOTE FILE MANIPULATION
	5.1 Editing notes
	5.2 Viewing notes
	5.3 Automatic filename synchronization before and after editing
	5.4 Printing note files
	5.5 Use Tp-Note in shell scripts

	6 OPTIONS
	7 THE NOTE’S DOCUMENT STRUCTURE
	7.1 The document’s header and body
	7.2 Links to resources and other documents
	7.2.1 Link types
	7.2.2 Local links in HTML export
	7.2.3 Local links with format strings

	8 METADATA FILENAME SYNCHRONIZATION
	8.1 Filename synchronization schemes

	9 CUSTOMIZATION
	9.1 Register your own text editor
	9.2 Change the file extension for new note files
	9.3 Configure the natural language detection algorithm
	9.4 Localize the note’s front matter
	9.5 Change the default markup language
	9.5.1 Change the default markup language to ReStructuredText
	9.5.2 Change the markup language for one specific note only

	9.6 Change the sort tag character set
	9.7 Customize the filename synchronization scheme
	9.8 Store new note files by default in a subdirectory
	9.9 Customize the built-in note viewer
	9.9.1 Change the way how note files are rendered for viewing
	9.9.2 Delay the launch of the web browser
	9.9.3 Change the HTML rendition template
	9.9.4 Customize the built-in HTML exporter

	9.10 Choose your favourite web browser as note viewer

	10 TEMPLATES
	10.1 Template types
	10.2 Template variables
	10.3 Template filters
	10.4 Content template conventions
	10.5 Filename template conventions

	11 SECURITY AND PRIVACY CONSIDERATIONS
	12 ENVIRONMENT VARIABLES
	13 EXIT STATUS
	14 RESOURCES
	15 COPYING
	15.1 Contribution

	16 AUTHORS

