

TALLINN UNIVERSITY OF TECHNOLOGY

TUT Centre for Digital Forensics and Cyber Security

Department of Computer Science

Tallinn 2017

ITC70LT

Dipl.-Ing. Jens Getreu 130546IVCMM

Forensic-Tool Development with Rust
Master thesis

Prof. Olaf Manuel Maennel

Supervisor

Table of Contents
Preface .. vii
1. Introduction .. 1
2. Tool Requirements in Digital Forensics ... 4

2.1. Tool validation ... 4
2.2. Security ... 7
2.3. Code efficiency ... 8

3. GNU-strings in forensic examination ... 9
3.1. Test case 1 - International character encodings 9
3.2. Typical usage .. 13
3.3. Requirements derived from typical usage 14

4. Specifications ... 18
4.1. User interface ... 18
4.2. Character encoding support ... 18
4.3. Concurrent scanning .. 18
4.4. Batch processing .. 18
4.5. Merge findings .. 19
4.6. Facilitate post-treatment .. 19
4.7. Automated test framework ... 19
4.8. Functionality oriented validation .. 19
4.9. Efficiency and speed ... 20
4.10. Secure coding ... 20

5. The Rust programming language .. 22
5.1. Memory safety .. 22
5.2. Iterators .. 25
5.3. Zero-Cost Abstractions ... 26
5.4. Recommendations for novice Rust programmers 27

5.4.1. Borrow scope extension .. 27
5.4.2. Structure as a borrower .. 28

6. Software development process and testing 30
6.1. Risk management ... 30
6.2. Prototype ... 31
6.3. Test Driven Development .. 31

6.3.1. Writing tests .. 31
6.3.2. Development cycle ... 32
6.3.3. Evaluation and conclusion ... 33

6.4. Documentation .. 34

iii

Forensic-Tool Development with Rust

7. Analysis and Design ... 36
7.1. Concurrency .. 36
7.2. Reproducible output ... 38
7.3. Scanner Algorithm .. 40
7.4. Memory layout .. 41
7.5. Integration with a decoder library ... 44
7.6. Valid string to graphical string filter .. 46
7.7. Polymorphic IO ... 48
7.8. Merging vectors .. 50

8. Stringsext’s usage and product evaluation .. 55
8.1. Test case 2 - international character encodings 55

8.1.1. UTF-8 encoded input ... 56
8.1.2. UTF-16 encoded input ... 58

8.2. User documentation .. 62
8.3. Benchmarking and field experiment ... 66
8.4. Product evaluation .. 71
8.5. User feedback ... 73
8.6. Licence and distribution ... 74

9. Development process evaluation and conclusion 76
References .. 80

iv

List of Figures
2.1. Model of tool neutral testing .. 6
2.2. An overview of searching function ... 6
2.3. The search target mapping ... 7
3.1. Test case international character encodings 10
3.2. GNU-strings, single-7-bit ... 11
3.3. GNU-strings, single-8-bit option ... 11
3.4. GNU-strings, 16-bit little-endian option .. 11
3.5. GNU-strings, 16-bit big-endian option .. 12
3.6. GNU-strings, 32-bit little-endian option .. 12
3.7. GNU-strings, 32-bit big-endian option .. 12
5.1. Memory layout of a Rust vector ... 26
5.2. Memory layout of a Java vector .. 26
7.1. Data processing and threads .. 38
7.2. Non reproducible output ... 39
7.3. Reproducible output .. 39
8.1. Unicode test-file: orig.txt .. 55
8.2. Stringsext’s output with UTF-8 encoded input 57
8.3. Stringsext’s output with UTF-16be encoded input 59
8.4. Stringsext’s output with UTF-16le encoded input 60

v

List of Tables
3.1. GNU-strings manual page (extract) .. 15
3.2. sort manual page (extract) ... 16
4.1. CVSS Severity (version 2.0) .. 21
4.2. CVSS Version 2 Metrics .. 21
5.1. Common weaknesses in C/C++ that affect memory 22
5.2. Ressource sharing in Rust .. 23
5.3. Common weaknesses in C/C++ affecting memory avoidable with
iterators .. 25
8.1. Unicode byte order mark .. 57
8.2. UTF-16 Bit distribution ... 61
8.3. Manual page - stringsext - version 1.0 ... 62
8.4. Benchmark result synopsis ... 70

vi

Preface
Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materi-
als, references to the literature and the work of others have been referred
to. This thesis has not been presented for examination anywhere else.

Author: Jens Getreu

vii

Preface

Abstract

Within the framework of this study the suitability of the Rust ecosystem for
forensic tool development was evaluated. As case study, the tool Stringsext
was developed. Starting from analysing the specific requirements of foren-
sic software in general and those of the present case study, all stages of
the software development life-cycle have been executed, up to the first pro-
duction release. Stringsext is a reimplementation and enhancement of the
GNU-strings tool, a widely used program in forensic investigations. Strings-
ext recognizes Cyrillic, CJKV characters and other scripts in all supported
multi-byte-encodings while GNU-strings fails in finding these in UTF-16 and
other encodings.

During the case study it has become apparent that the Rust ecosystem pro-
vides good support for secure coding principles and unit testing. Further-
more, the benchmarks showed a satisfactory performance of the resulting
Stringsext binaries comparable to the original C version.

This thesis is written in English and is 81 pages long, including 9 chapters,
19 figures and 11 tables.

viii

Preface

Annotatsioon

Käesoleva uurimustöö eesmärgiks on analüüsida programmeerim-
iskeele Rust ökosüsteemi sobivust kohtuekspertiisis kasutatava tarkvara
loomiseks. Sellel eesmärgil arendati välja tööriist Stringsext. Läbiti kõik
tarkvaraarenduse tsüklid, kohtuekspertiisi-tarkvara valdkonnaspetsiifiliste
nõuete analüüsist kuni valmis tarkvaraversioonini. Stringsext on GNU-
strings'i — kohtuekspertiisis laialdaselt kasutatava tööriista — edasiaren-
dus ja täiendus. Stringsext toetab kirillitsa ja CJKV-tähemärkide otsingut
mitmebaidilist kodeeringut kasutavast tekstist, sh. ka kodeeringud, mida
GNU-strings ei toeta, näiteks UTF-16.

Töö tulemusena ilmnes, et Rust'i ökosüsteem pakub head tuge turvalisuse-
le keskenduva tarkvara arendamiseks ja moodultestide (Unit test) kirju-
tamiseks. Lisaks näitasid reeperid (benchmark) et tarkvara jõudlus oli võr-
reldav programmeerimiskeeles C kirjutatud GNU-strings'ga.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 81 leheküljel, 9
peatükki, 19 joonist, 11 tabelit.

ix

Preface

Table of abbreviations and terms

ASCII American Standard Code for Information Interchange.

API Application Programming Interface.

BIG5 Chinese character encoding method.

BOM Unicode byte order mark.

CJK Chinese, Japanese, and Korean languages

CJKV Chinese, Japanese, Korean and Vietnamese languages

CVE Common Vulnerabilities and Exposures.

CWE Common Weakness Enumeration.

EUC-JP Multibyte character encoding system used primarily for
Japanese, Korean, and simplified Chinese.

GNU Recursive acronym for “GNU’s Not Unix!” used for an ex-
tensive collection of computer software.

KOI8-R Character encoding, designed to cover Russian, which uses
a Cyrillic alphabet.

NIST National Institute of Standards and Technology.

TDD Test Driven Development.

UTF Unicode Transformation Format.

WHATWG Web Hypertext Application Technology Working Group.

x

Chapter 1. Introduction
My first interest in the Rust programming language woke in a cryptography
seminar where the participants where asked to break encryption schemes.
Some of these exercises required a lot of computational power. This is why
I was looking for an alternative to Python, which I normally use for this
purpose. Finally, I came up with an - in this context - uncommon choice: the
Rust programming language. I chose it mainly for its zero cost abstractions
(cf. Section 5.3, “Zero-Cost Abstractions”) resulting in efficient code com-
parable to C and C++. Building on this initial experience, I implemented
more projects in Rust and discovered some of its outstanding properties,
e.g. memory safety (cf. Section 5.1, “Memory safety”), making it interest-
ing, in particular, for IT-forensics.

Later, as part of a joint project, I worked in a team together IT-forensic
experts, where I became acquainted with tools and methods customary in
the sphere of forensics. Many software products e.g. Forensic Toolkit (FTK)
or XRY encompass a workflow with a large variety of specialized tools for
data acquisition and analysis. These tools are very handy and give a quick
overview of artefacts that could be relevant for the present case. Although
the software usually covers the most common data structures, not all can
be analysed automatically. This is why forensic practitioners use a set of
little specialized utilities like the Unix commands file or strings and
many others. The latter, hereafter referred as GNU-strings, is a program
that extracts ASCII characters from arbitrary files. It is mainly useful for
determining the ASCII contents of non-text files (cf. Chapter 3, GNU-strings
in forensic examination). GNU-strings' main limitation is that it has no mul-
ti-byte-encoding support.

The software tool Stringsext, developed in this present work, is meant to
fill this gap by implementing multi-byte-encoding support. Special require-
ments relative to forensic tool development (cf. Chapter 2, Tool Require-
ments in Digital Forensics) lead us to an experiment: Implementing a foren-
sic tool in the very young and innovative programming language Rust!
Is Rust a suitable choice? The following case study will provide some an-
swers and guidelines for similar projects. Stringsext’s source code is pub-
licly available [1] under: https://github.com/getreu/stringsext . The
project’s main page has links to the developer documentation and to the
compiled binaries for various architectures.

1

https://github.com/getreu/stringsext

Introduction

What are the special requirements in the field of digital forensics?
Digital Forensics also known as digital forensic science is a branch of foren-
sic science studying crime and its traces. “Traces are the most elementary
information that results from crime. They are silent witnesses that need to
be detected, analysed, and understood to make reasonable inferences about
criminal phenomena, investigation or demonstration for investigation and
court purposes” [2 p. 14]. The branch science dealing with digital traces
and digitised information is referred as digital forensic science. It can be
described as “the process of identifying, preserving, analysing and present-
ing digital evidence in a manner that it legally acceptable.” [3 p. 12]. When
digital traces are presented in court to support an assertion the term digital
evidence DE or electronic evidence is in common use. In this work I use the
term digital evidence following common practise in Great Britain.

Most human interaction with electronic devices leaves traces in some elec-
tronic memory. In cases the user does not directly communicate with its
device additional traces may also be found in all intermediate (network) de-
vices. Due to the cross-linked nature of computer systems the total amount
of data that needs to be taken into consideration when investigating a crime
is enormous. In this ocean of information the investigator has to find spe-
cific drops of information constituting digital evidences. Furthermore, ima-
gine someone throws a stone in the sea. It will change the state of the water
particles in various places, but only a tiny share of this change is suitable
to prove that the stone was indeed thrown in water.

Following the principles in Transactional Analysis as founded by the psy-
chologist Eric Berne, the term “transaction” can be defined as the smal-
lest atomic interaction in a human - computer system communication. For
digital forensic practitioners the well-known and well documented cause-
effect relationships between human transactions and digital traces is of ut-
most importance. A cause-effect-relationship is usually part of a non linear
chain of events. For example an attacker may send "phishing" emails to its
victims that try to lure them to identity-stealing sites. The stolen identity
is then sold and will be used in other crimes. Behind the scenes many sys-
tems are involved in such a scenario. A typical transaction of interest could
be “the user has opened a browser window and visited the site xy” which
leaves traces in some computer memory. In the domain of digital forensics
an observation of a well known cause-effect-relationship between an elec-
tronic trace (effect) and what has happened (cause) is an called artefact. It

2

Introduction

embodies any “item of interest that help an investigation move forward.” [4
p. 125]. A more formal definition named Curated (digital) Forensic Artefact
(CuFA) proposed in [4 p. 131] embraces that it must:

• be curated via a procedure which uses forensic techniques.

• have a location in a useful format (when applicable).

• have evidentiary value in a legal proceeding.

• be created by an external force/artificially.

• have antecedent temporal relation/importance.

• be exceptional (based on accident, rarity, or personal interest).

Forensic examiners - the law enforcement personnel who deal with digital
evidence - face inter alia two challenges:

1. to collect and to preserve the huge amount of data that may be related
to a crime and

2. to search and identify artefacts in the collected data.

The latter aspect includes so called string search which is useful when
dealing with unknown binaries . Most executable binary code contains hu-
man readable character sequences called strings. A very common used
program to extract strings from a binary executable code is the so called
GNU-strings program. Also, the software tool Stringsext developed in this
present work is made for this purpose: The new development is designed to
overcome some of GNU-strings shortcomings. Where possible, it maintains
GNU-strings' user-interface.

3

Chapter 2. Tool Requirements in
Digital Forensics
This chapter describes general requirements towards forensic tools. They
partly emerge from legal and technical demands and motivate, inter alia,
the choice of the programming language Rust.

2.1. Tool validation

Like in other established forensic disciplines the forensic soundness or re-
liability of digital evidence is determined by the validity and correctness of
forensic software used in examination. In other words, to guarantee that
the digital evidence is forensically sound, all tools used to collect, preserve
and analyse digital evidences must be validated. Tool validation can also be
formally required to comply with standards like the ISO 17025 Laboratory
Accreditation standard.

It should be noted that the forensic community’s definition of validation and
verification differs from what is used in software engineering. Two com-
monly used definitions state the following:

A short and catchy definition was proposed by Beckett and Slay [5]:

Validation
is the confirmation by examination and the provision of objective evi-
dence that a tool, technique or procedure functions correctly and as in-
tended.

Verification
is the confirmation of a validation with a laboratories tools, techniques
and procedures.

It means that establishing a reliable technical method to observe a cause
and effect relation between a human action and a resulting artefact is called
validation. The test, whether a technical device is suitable or not to execute
the above method reliably, is called verification.

Craiger [6 p. 92] defines validation and verification as follows:

4

Tool Requirements in Digital Forensics

Software verification
provides objective evidence that the design outputs of a particular phase
of the software development life cycle meet all the specified require-
ments for that phase. Software verification looks for consistency, com-
pleteness, and correctness of the software and its supporting doc-
umentation, as it is being developed, and provides support for a sub-
sequent conclusion that software is validated. Software testing is one of
many verification activities intended to confirm that software develop-
ment output meets its input requirements. Other verification activities
include various static and dynamic analyses, code and document inspec-
tions, walkthroughs, and other techniques.

Software validation
is a part of the design validation for a finished device…considers
software validation to be ‘confirmation by examination and provision of
objective evidence that software specifications conform to user needs
and intended uses, and that the particular requirements implemented
through software can be consistently fulfilled.’ In practice, software val-
idation activities may occur both during, and as at the end of the soft-
ware development life cycle to ensure that all requirements have been
fulfilled. …the validation of software typically includes evidence that
all software requirements have been implemented correctly and
completely and are traceable to system requirements. A conclusion that
software is validated is highly dependent upon comprehensive software
testing, inspections, analyses, and other verification tasks performed at
each stage of the software development life cycle.

Common to both definitions of validation is the mapping of the tool’s re-
quirements to tests confirming that they fully and correctly implemented.
At first glance the above approach might seem simple to implement but in
many cases it is impossible to carry out:

Traditional research discourse on tool testing in this discipline
concerns validation of a tool, that is, all the functions of a tool,
and with the failure of a validation of a tool the traditional think-
ing is to invalidate the tool. In most cases forensic tools are
quite complex and provide hundreds of specific functions, of
which only a few may ever be used by an examiner. Even triv-
ial testing of all functions of a forensic tool for every version

5

Tool Requirements in Digital Forensics

under all conditions, conservative estimates would indicate sig-
nificant cost [5].

To cope with this difficulty Beckett and Slay [5] suggest a model so called
Model of tool neutral testing or functionality oriented validation. Instead
of testing if a software product meets all its requirements an independent
set of forensic functions and their specifications is defined. This allows to
decouple the validation procedure from the implementation of the forensic
tool itself. A forensic function is an activity required in forensic investiga-
tion that produces known valid results for a given set of test cases.

Figure 2.1. Model of tool neutral testing

The first difficulty consists in breaking down the multitude of activities in
forensic investigation in function categories and subcategories as shown in
Figure 2.2, “An overview of searching function” [3 p. 17].

Figure 2.2. An overview of searching function

The search target mapping as shown below illustrates under the subcate-
gory “Character encoding” the main deficit of GNU-strings supporting only
ASCII encoding. In global cyberspace forensic tools must identify a multi-

6

Tool Requirements in Digital Forensics

tude of encodings. This leads us to the main motivation and requirement of
Stringsext: Section 4.2, “Character encoding support”

Figure 2.3. The search target mapping

The functionality oriented validation can be classified as “black box testing”
examining functionality without any knowledge of internal implementation,
without seeing the source code. “Black box testing” of functions and their
specifications allows conducting numerous tests with acceptable costs. It
requires test cases with known valid results. With Stringsext this approach
is used to test the correctness of the implementation when dealing with
large real-world data (cf. Section 4.8, “Functionality oriented validation”).

When the internal computation is as complex as in Stringsext, “white box
testing” is essential. The method chosen in the present development “test
harness” is detailed in the Section 4.7, “Automated test framework”.

2.2. Security
The relation between the criminal and the forensic examiner can be de-
scribed as follows: “Make it hard for them to find you and impossible
for them to prove they found you” [7]. Have your recognised the state-
ment? Is widely cited when it comes to define anti-forensics. This traditional
"hide and seek" relation might soon take a new dimension: Eggendorfer [8]

7

Tool Requirements in Digital Forensics

stresses with good reasons that forensic tools are software too and therefor
vulnerable to attacks.

GNU-strings is part of the GNU binutils collection which became publicly
available in 1999 [9]. Today it has reached the notable age of 17 years.
GNU-strings is a comparatively small program with 724 lines of code only.
It is all the more surprising that in 2014 the security researcher Zalewski
discovered a serious security vulnerability CVE-2014-8485 [10].

The setup_group function in bfd/elf.c in libbfd in GNU
binutils 2.24 and earlier allows remote attackers to cause a de-
nial of service (crash) and possibly execute arbitrary code via
crafted section group headers in an ELF file.

— CVE-2014-8485

Zalewski headlined his bug report “Don’t run strings on untrusted files.”
Needless to say that this advice can not be followed in the context of a
forensic investigation. In the meantime the bug was fixed but users remain
confused and bewildered.

The above bug is part of a vulnerability class related to memory safety prob-
lems. GNU strings is written in C, a language whose abstractions can not
guarantee memory safety. In order to exclude potential vulnerabilities of
the same kind from the start, Stringsext was developed with the Rust pro-
gramming language which is discussed further in the Chapter 5, The Rust
programming language.

2.3. Code efficiency
The searching domain in forensic investigations is often as large as the
seized data-carrier. Nowadays hard-disk images hold several TiB of data.
Memory images of the RAM are smaller, but still some GiB in size. In or-
der to address so big search domains, forensic software must operate very
efficiently. This is why forensic software is often programmed in C or C
++. But not only the programming language matters: Efficient code re-
quires carefully chosen abstractions, efficient algorithms avoiding unneces-
sary data-copies and program-loops.

8

Chapter 3. GNU-strings in forensic
examination
This chapter first analyses GNU-strings' limitations concerning multi-byte-
encodings and international scripts (cf. Section 3.1, “Test case 1 - Interna-
tional character encodings”). Further, a use case shows how GNU-strings
is typically used in forensic examination (cf: Section 3.2, “Typical usage”).
Based upon this we derive a set of requirements for Stringsext (cf: Sec-
tion 3.3, “Requirements derived from typical usage”).

Forensic examiners use the GNU program strings to get a sense of the func-
tionality of an unknown program. E.g. extracted URLs to malicious sites
can be an indicator of malware. Also, user prompts, error messages, and
status messages can give hints for further investigation.

3.1. Test case 1 - International character en-
codings

As discussed above the main motivation for developing Stringsext are the
missing multi-byte character encoding semantics in GNU-strings. GNU-
strings encoding support consists of a rudimentary filter accessed with the
option --encoding . For details see the Table 3.1, “GNU-strings manual
page (extract)”. How well does GNU-strings detect Unicode?

The Figure 3.1, “Test case international character encodings” shows the
content of a text file chosen as test case.

9

GNU-strings in forensic examination

Figure 3.1. Test case international character encodings

The above file is then is converted into different encodings using the fol-
lowing script:

Test case preparation

#!/bin/sh

cp orig.txt encoded-utf8.txt

iconv -f utf8 -t utf16le orig.txt >encoded-utf16le.txt

iconv -f utf8 -t utf32le orig.txt >encoded-utf32le.txt

iconv -f utf8 -t utf16be orig.txt >encoded-utf16be.txt

iconv -f utf8 -t utf32be orig.txt >encoded-utf32be.txt

In order to observe GNU-strings Unicode detection capabilities, all the
above test-files are searched for valid graphic strings with the command
strings using all possible variation of its encoding filter.

The following figures show GNU-strings output.

10

GNU-strings in forensic examination

Figure 3.2. GNU-strings, single-7-bit

Figure 3.3. GNU-strings, single-8-bit option

Figure 3.4. GNU-strings, 16-bit little-endian option

11

GNU-strings in forensic examination

Figure 3.5. GNU-strings, 16-bit big-endian option

Figure 3.6. GNU-strings, 32-bit little-endian option

Figure 3.7. GNU-strings, 32-bit big-endian option

Results
As shown in the Figure 3.3, “GNU-strings, single-8-bit option”, the encoding
filter -e S is the only filter that finds international characters at all.

UTF-8 is the only encoding in which GNU strings is able to
find international characters.

The Figure 3.4, “GNU-strings, 16-bit little-endian option” and the Fig-
ure 3.5, “GNU-strings, 16-bit big-endian option” confirm that with UTF-16
no international characters are recognized. The same holds true for
UTF-32: see Figure 3.6, “GNU-strings, 32-bit little-endian option” and Fig-
ure 3.7, “GNU-strings, 32-bit big-endian option”. This limitation is of partic-

12

GNU-strings in forensic examination

ular importance in forensic investigations: The Microsoft-Windows operat-
ing system handles Unicode characters in memory as 2 byte UTF-16 words.
As a result when dealing with Microsoft-Windows memory images, GNU-
strings is not able to detect any international characters!

It should not be forgotten that GNU-strings can not analyse multi-byte en-
codings in general. This is why other very common encodings e.g. big5 or
koi8-r were not tested even though they are widely used.

The above-outlined limitations led to Stringsext's main requirement: Sec-
tion 4.2, “Character encoding support”.

3.2. Typical usage
The following script 1 shows how forensic examiners typically use the pro-
gram GNU-strings`:

Typical usage of GNU-strings

#!/bin/bash

strings -a -t d $1 > $1.strings.temp

strings -a -t d -e l $1 >> $1.strings.temp

strings -a -t d -e L $1 >> $1.strings.temp

strings -a -t d -e b $1 >> $1.strings.temp

strings -a -t d -e B $1 >> $1.strings.temp

strings -a -t d -e s $1 >> $1.strings.temp

strings -a -t d -e S $1 >> $1.strings.temp

sort -n -u -b $1.strings.temp > $1.strings

rm $1.strings.temp

Please refer to Table 3.1, “GNU-strings manual page (extract)” for details
about the used options above.

The first and only parameter of the above script $1 is the filename of the
binary data to be examined.

The examination is carried out by the strings command. strings is
invoked in total seven times. Each run it scans the whole data, searches
for valid graphic ASCII strings and appends its result to the temporary
file $1.strings.temp .

1The script was kindly provided by an employee of the German CERT.

13

GNU-strings in forensic examination

-a means that the whole file is to be scanned, not only a part of it.
The option -t d means that each line of output is prepended by the
decimal offset indicating the location of the string that is found.
Even though strings can only recognise pure ASCII encodings the
option -e allows specifying some variations concerning the memory
layout in which the characters are stored. For example -e b means
that one ASCII character is stored in two bytes (16 bit) in Big-Endian
order. For the other variants please refer to Table 3.1, “GNU-strings
manual page (extract)”.
It may surprise that strings with -t d is set up to print the offset
in decimal although hexadecimal notation is generally preferred when
dealing with binary data. The reason lies in the post-treatment per-
formed in this line: The -n or --numeric-sort option tells the sort
command to interpret the beginning of the line as decimal number and
sort criteria. Since sort is limited to the decimal number notation,
strings is tied to it too. Please refer to Table 3.2, “sort manual page
(extract)” for details about sort .
The option -u tells sort to omit repeated lines. This only works be-
cause the concatenated file does not contain labels indicating which of
the strings run has printed a given line. As the information is lost
anyway, it makes sense to remove identical lines. Anyway, it is prefer-
able to indicate the encoding together with the finding.
The -b option interfaces with strings output formatting: offset-num-
bers are indented with spaces.
The sorted and merged output of the strings search is stored in the file
$1.strings .
The temporary file $1.strings.temp is deleted.

3.3. Requirements derived from typical usage
With the above observations of how GNU-strings is used, I define the fol-
lowing requirements for the new development Stringsext in order to im-
prove its usefulness and/or usability:

1. GNU-strings can not scan for more than one encoding simultaneously.
This scales badly when more encodings are of interest. In the above
example, the same input data is scanned seven times. Seeing that the
examined data is usually stored on relatively slow hard-disks or even
network shares the new scan algorithm should perform every scan for

14

GNU-strings in forensic examination

a certain encoding concurrently. The above observation leads to re-
quirement detailed in the Section 4.3, “Concurrent scanning”.

2. Large binary data usually contains strings in several encodings. Here-
by it frequently happens that a byte sequence represents valid strings
in more than one encoding. The overall context together with addition-
al knowledge from other sources will lead to an assumption of the origi-
nal encoding of a given byte sequence. For this to be practical Strings-
utf presents possible valid string interpretations next to each other.
Technically it requires that Stringsext merges the output of the differ-
ent encoding scanners before printing. The above observation leads to
requirement detailed in the Section 4.5, “Merge findings”.

3. The shift to concurrent processing and subsequent merging solves al-
so a shortcoming in the approach shown in Typical usage of GNU-
strings: the doubled disc space consumption caused by the file
$1.strings.temp . In order to avoid temporary files, the search field
has to be divided into small chunks of some memory pages in size. Be-
fore starting to search in the next chunk the findings of all encoding
scanners in the current chunk is merged in memory and printed. This
way no temporary file is needed. The above observation leads to re-
quirement detailed in the Section 4.4, “Batch processing”.

4. In the present example, the output of strings is forwarded to the
sort command. Even though external sorting with Stringsext will not
be necessary anymore due to its build in merging ability, other post-
treatments like grep remain very useful. Therefore, Stringsext should
provide a mode with a machine friendly output formatting for line ori-
ented tools like grep or agrep . The above observation leads to re-
quirement detailed in the Section 4.6, “Facilitate post-treatment”.

Table 3.1. GNU-strings manual page (extract)

NAME

 strings - print the strings of printable characters in files.

SYNOPSIS

 strings [-afovV] [-min-len]

 [-n min-len] [--bytes=min-len]

 [-t radix] [--radix=radix]

 [-e encoding] [--encoding=encoding]

 [-] [--all] [--print-file-name]

15

GNU-strings in forensic examination

 [-T bfdname] [--target=bfdname]

 [-w] [--include-all-whitespace]

 [--help] [--version] file...

-a, --all
Scan the whole file, regardless of what sections it contains or
whether those sections are loaded or initialized. Normally this is the
default behaviour, but strings can be configured so that the -d is the
default instead.

The - option is position dependent and forces strings to perform full
scans of any file that is mentioned after the - on the command line,
even if the -d option has been specified.

-e encoding, --encoding=encoding
Select the character encoding of the strings that are to be found. Pos-
sible values for encoding are: s = single-7-bit-byte characters (ASCII,
ISO 8859, etc., default), S = single-8-bit-byte characters, b = 16-bit
big-endian, l = 16-bit little-endian, B = 32-bit big-endian, L = 32-bit
little-endian. Useful for finding wide character strings. (l and b apply
to, for example, Unicode UTF-16/UCS-2 encodings).

-t radix, --radix=radix
Print the offset within the file before each string. The single charac-
ter argument specifies the radix of the offset o for octal, x for hexa-
decimal, or d for decimal.

Table 3.2. sort manual page (extract)

NAME

 sort - sort lines of text files

SYNOPSIS

 sort [OPTION]... [FILE]...

 sort [OPTION]... --files0-from=F

-b, --ignore-leading-blanks
ignore leading blanks

-n, --numeric-sort
compare according to string numerical value

16

GNU-strings in forensic examination

-u, --unique
with -c, check for strict ordering; without -c, output only the first of
an equal run

17

Chapter 4. Specifications
In the Chapter 2, Tool Requirements in Digital Forensics and the Sec-
tion 3.3, “Requirements derived from typical usage” we determined the
needs for Stringsext from the user’s perspective. This chapter provides a
precise idea of the problem is to be solved. It serves also as a guidance to
implement tests of each technical requirement.

4.1. User interface

The user interface of Stringsext should reproduce GNU-strings' user inter-
face as close as possible. Where applicable, options should follow the same
syntax. When used in ASCII-only mode, the output of Stringsext should be
bit-identical with GNU-strings' output.

4.2. Character encoding support

Besides ASCII, Stringsext should support common multi-byte encodings
like UTF-8, UTF-16 big Endian, UTF-16 little Endian, KOI8-R, KOI8U, BIG5,
EUC-JP and others. The string findings in these encodings should be pre-
sented in chronological order and merged. The user should be able to spe-
cify more than one encoding at the same time.

4.3. Concurrent scanning

Each search encoding specified by the user is assigned to a separate thread
hereafter referred as “scanner”.

4.4. Batch processing

Because of the differing complexity of the decoding process depending on
the chosen encoding, the scanners run at different speeds. In order to li-
mit memory consumption it must be assured that the scanners do not drift
apart. This is guaranteed by operating in batch mode: all scanners oper-
ate simultaneously on the same search field chunk. Only when all scanners
have finished searching and reported their findings, the next chunk can be
processed.

18

Specifications

4.5. Merge findings
When a scanner completes the current search field chunk, it sends its find-
ings to the merger-thread. When all threads' findings are collected, the
merging algorithm brings them in chronological order. Then the printer
formats the findings and prints them to the output channel.

4.6. Facilitate post-treatment
Stringsext should have at least one print mode allowing post-treatment with
line-oriented tools like grep , agrep or a spreadsheet program. The output
of the other modes should be optimised for human readability.

4.7. Automated test framework
To take into account the increased requirements of the forensic community
in correctness and reliability the test driven development method should be
applied. Unit tests programming various test cases check automatically for
correct results. Furthermore, the chosen methodology makes sure that the
unit-tests are working as intended. For details please refer to Chapter 6,
Software development process and testing.

4.8. Functionality oriented validation
Well designed unit testing reduces the defect rate significantly. Unit testing
allows to verify whether a piece of code produces valid output for a given
test case. The difficulty consists in finding relevant test cases challenging
all internal states of the program. Unfortunately no indicators arise from
these tests on how the program behaves on input data other then the test
cases. This is why tests under real world conditions are indispensable.

In addition to the mentioned unit tests Stringsext should be evaluated ac-
cording the functionality oriented validation method. This common method
to validate forensic software is discussed in detail in the Section 2.1, “Tool
validation”. In the present case a comparative test should be executed as
follows:

The same hard-disk image of approximate 500MB is analysed
twice: first with GNU-strings then with Stringsext. If both out-
puts are identical, the test is passed.

19

Specifications

4.9. Efficiency and speed
This requirement emerges from special requirements on tools in forensic
investigations which are detailed in the Section 2.3, “Code efficiency”.

Applied to Stringsext the following is required:

The programming language should

• allow a fine control over pointers and memory allocation,

• offer zero cost abstractions,

• no or minimal runtime.

Programming style and techniques should promote efficient coding by

• avoiding as much as possible copying the input data,

• carefully chosen abstractions,

• efficient algorithms avoiding unnecessary

◦ data-copies and

◦ program-loops.

4.10. Secure coding
In the narrow sense, “security coding” is more a design goal than a func-
tional requirement. Secure coding denotes the practice of developing com-
puter software in a way that reduces the accidental introduction of security
vulnerabilities to a level that can be fully mitigated in operational environ-
ments. This reduction is accomplished by preventing coding errors or dis-
covering and eliminating security flaws during implementation and testing.

From the code security point of view the requirement defined in the Sec-
tion 4.2, “Character encoding support” is the most critical: The NIST Na-
tional Vulnerability Database lists under the heading “character encoding”
22 vulnerabilities. To give an idea of the severity of this kind of vulnerabi-
lity, here a short summary of the most recent one, published in September
2016, is CVE-2016-3861:

LibUtils in Android 4.x before 4.4.4, 5.0.x before 5.0.2, 5.1.x
before 5.1.1, 6.x before 2016-09-01, and 7.0 before 2016-09-01

20

Specifications

mishandles conversions between Unicode character encodings
with different encoding widths, which allows remote attack-
ers to execute arbitrary code or cause a denial of service
(heap-based buffer overflow) via a crafted file, aka internal bug
29250543 [11]:

Table 4.1. CVSS Severity (version 2.0)

CVSS v2 Base
Score

9.3 HIGH

Vector (AV:N/AC:M/Au:N/C:C/I:C/A:C) (legend)

Impact Subscore 10.0

Exploitability Sub-
score

8.6

Table 4.2. CVSS Version 2 Metrics

Access Vector Network exploitable - Victim must vol-
untarily interact with attack mechanism

Access Complexity Medium

Authentication Not required to exploit

Impact Type Allows unauthorized disclosure of infor-
mation; Allows unauthorized modifica-
tion; Allows disruption of service

The technical cause of the CVE-2016-3861 vulnerability is an exploitable
heap-based buffer overflow. Buffer overflows belong to the vulnerability
category memory safety issues which are typical for the system program-
ming languages C and C++.

To avoid similar vulnerabilities, Stringsext is implemented using the Rust
programming framework. A short description of the programming language
and its security guaranties can be found in the Chapter 5, The Rust pro-
gramming language.

21

Chapter 5. The Rust programming
language
This chapter presents some of Rust’s core properties that led to the choice
of implementing Stringsext in Rust.

In forensic tool development code efficiency (cf. Section 2.3, “Code efficien-
cy”) and security (cf. Section 2.2, “Security”) is of primary importance. Rust
supports these requirements with its zero cost abstractions and its guaran-
teed memory safety.

5.1. Memory safety
All memory-related problems in C and C++ come from the fact that C pro-
grams can unrestrainedly manipulate pointer to variables and objects out-
side of their memory location and their lifetime. The Table 5.1, “Common
weaknesses in C/C++ that affect memory” shows a selection of most com-
mon memory safety related vulnerabilities [12]. This is why memory safe
languages like Java do not give programmers direct and uncontrolled ac-
cess to pointers. The Java compiler achieves this with a resource costly run-
time and a garbage collector. The related additional costs in terms of run-
time resources exclude programming language like Java for most forensic
tool development.

Table 5.1. Common weaknesses in C/C++ that affect memory

CWE ID Name

119 Improper Restriction of Operations within the
Bounds of a Memory Buffer

120 Buffer Copy without Checking Size of Input ('Clas-
sic Buffer Overflow')

125 Out-of-bounds Read

126 Buffer Over-read ('Heartbleed bug')

122 Heap-based Buffer Overflow

129 Improper Validation of Array Index

401 Improper Release of Memory Before Removing Last
Reference ('Memory Leak')

22

The Rust programming language

415 Double Free

416 Use After Free

591 Sensitive Data Storage in Improperly Locked Mem-
ory

763 Release of Invalid Pointer or Reference

For many years program efficiency and memory safety seemed to be an
insurmountable discrepancy. Now, after 10 years of development, a new
programming language called Rust promises to cope with this balancing
act. Rust's main innovation is the introduction of semantics defining data
ownership. This new programming paradigm allows the compiler to guar-
antee memory safety at compile-time. Thus, no resource costly runtime is
needed for that purpose. In Rust most of the weaknesses listed in Table 5.1,
“Common weaknesses in C/C++ that affect memory” are already detected
at compile time. Moreover, Rust's memory safety guarantees that none of
these weaknesses can result in an undefined system state or provoke data
leakage.

Rust's main innovation is the introduction of new semantics defining own-
ership and borrowing. They translate to the following set of rules which
Rust’s type system enforces at compile time:

1. All resources (e.g. variables, vectors…) have a clear owner.
2. Others can borrow from the owner.
3. Owner cannot free or mutate the resource while it is borrowed.

By observing the above rules Rust regulates how resources are shared with-
in different scopes. Memory problems can only occur when a resource is
referenced by multiple pointers (aliasing) and when it is mutable at the
same time. In contrast to other languages, Rust's semantics allow the type
system to ensure at compile time that simultaneous aliasing and mutation
mutually exclude each other. As the check is performed at compile-time,
no run-time code is necessary. Furthermore, Rust does not need a garbage
collector: when owned data goes out of scope it is immediately destroyed.

Table 5.2. Ressource sharing in Rust

Resource sharing
type

Aliasing Mutation Example

move ownership no yes let a = b

23

The Rust programming language

Resource sharing
type

Aliasing Mutation Example

shared borrow yes no let a = &b

mutable borrow no yes let a = &mut b ;

The following code samples [13] illustrate how well the Rust compiler de-
tects non-obvious hidden memory safety issues.

The following sample code returns a pointer to a stack allocated resource
s that is freed at the end of the function: we find ourselves with a “Use
after free” condition! The compiler aborts with the error message s does
not live long enough .

Vulnerable code sample 1

fn as_str(data: &u32) -> &str {

 let s = format!("{}", data);

 &s

}

Here the corrected memory safe code:

Secure code sample 1

fn as_str(data: &u32) -> String {

 let s = format!("{}", data);

 s

}

The push() method in the next example causes the backing storage of
data to be reallocated. As a result we have a dangling pointer, here x ,
vulnerability! The code does not compile in Rust.

Vulnerable code sample 2

let mut data = vec![1, 2, 3];

let x = &data[0];

data.push(4);

println!("{}", x);

Here the corrected memory safe version that compiles:

24

The Rust programming language

Secure code sample 2

let mut data = vec![1, 2, 3];

data.push(4);

let x = &data[0];

println!("{}", x);

5.2. Iterators
A very common group of programming mistakes is related to improper han-
dling of indexes especially in loops, e.g. “CWE-129: Improper Validation
of Array Index” (cf. Table 5.3, “Common weaknesses in C/C++ affecting
memory avoidable with iterators”[12]).

Table 5.3. Common weaknesses in C/C++ affecting memory avoidable with
iterators

CWE ID Name

119 Improper Restriction of Operations within the
Bounds of a Memory Buffer

125 Out-of-bounds Read

129 Improper Validation of Array Index

In addition to traditional imperative loop control structures, Rust offers ef-
ficient iteration with functional style iterators. Like in Haskell iterators are
lazy and avoid allocating memory for intermediate structures (you allocate
just when you call .collect()).

Besides performance considerations, iterators considerably enhance the ro-
bustness and safety of programs. They enable the programmer to iterate
through vectors without indexes! The following code shows an example.

Vigenère cipher in Rust

fet p: Vec<u8> = s.into_bytes(); //plaintext

let mut c: Vec<u8> = vec![]; //ciphertext

for (cypherb, keyb) in p.iter()

 .zip(key.iter().cycle().take(p.len())) {

 c.push(*cypherb ^ *keyb as u8);

 }

25

The Rust programming language

It must be noted that even with iterators out of bounds-errors may occur.
Nevertheless, iterators should be preferred because they reduce the prob-
ability of errors related to indexes drastically.

5.3. Zero-Cost Abstractions

It is the language design goal Zero-Cost Abstractions that makes the C/C
++ language so efficient and suitable for system programming. It means
that libraries implementing abstractions, e.g. vectors and strings, must be
designed in a way that the compiled binary is as efficient as if the program
had been written in Assembly. This is best illustrated with memory layouts:
Figure 5.1, “Memory layout of a Rust vector” shows a vector in Rust. Its
memory layout is very similar is to a vector in C/C++.

Figure 5.1. Memory layout of a Rust vector

In contrast, the memory safe language Java enforces a uniform internal
representation of data. In Java a vector has 2 indirections instead of 1 com-
pared to Rust and C/C++ (cf. Figure 5.2, “Memory layout of a Java vector”).
As the data could be represented in a more efficient way in memory, we see
that Java does not prioritise the Zero-Cost-Abstraction goal.

Figure 5.2. Memory layout of a Java vector

26

The Rust programming language

5.4. Recommendations for novice Rust pro-
grammers
This chapter introduces two fields of Rust programming that I struggled
with at the beginning. Even when the code does not explicitly annotate
lifetimes and does not use dynamic dispatching, the underlying concepts
are vital for the understanding of Rust’s error messages.

5.4.1. Borrow scope extension

My recommendation for novice programmers is to take the time to under-
stand Rust’s confusing concept of lifetimes in detail before starting a bigger
project. In some cases the borrow-scope is not obvious to see. For example,
a second borrower can extend the initial borrow scope. Liao [14] calls the
phenomena “borrow scope extension”.

Borrow cope extension, source code

struct Foo {

 f: Box<isize>,

}

fn main() {

 let mut a = Foo { f: Box::new(0) };

 let y: &Foo;

 if false {

 // borrow

 let x = &a; // share the borrow with new borrower y,

 // hence extend the borrow scope

 y = x;

 }

 // error: cannot assign to `a.f` because it is borrowed

 a.f = Box::new(1);

}

The following error message only shows the initial borrower whose scope
ends in line 13. The actual problem is caused by line 12 y=x which extends
the initial borrow scope.

Borrow scope extension, error message

error[E0506]: cannot assign to `a.f` because it is borrowed

27

The Rust programming language

 --> <anon>:15:5

 |

10 | let x = &a;

 | - borrow of `a.f` occurs here

...

15 | a.f = Box::new(1);

 | ^^^^^^^^^^^^^^^^^ assignment to borrowed `a.f` occurs here

To reason about borrows and lifetimes Liao [14] introduces the following
lifetime scheme, which I find very useful in general. The brackets and va-
riable names refer to the above source code.

Borrow scope extension, lifetime scheme

 { a { x y } * }

 resource a |___________|

 borrower x |___| x = &a

 borrower y |_____| y = x

borrow scope |=======|

 mutate a.f | error

5.4.2. Structure as a borrower

Stringext’s two main structures Mission and Finding are extensively bor-
rowed throuout the source code. When a structure holds a reference the
type-system has to make sure that the object it points to lives at least as as
long as the structure itself. The following source code shows an example.

structure as a borrower, source code

struct Foo {

 f: Box<usize>,

}

struct Link<'a> {

 link: &'a Foo,

}

fn main() {

 let a = Foo { f: Box::new(0)};

 let mut x = Link { link: &a };

 if false {

 let b = Foo { f: Box::new(1)};

 x.link = &b; //error: `b` does not live long enough

28

The Rust programming language

 }

}

Structure as a borrower, error message

error: `b` does not live long enough

 --> src/main.rs:16:19

 |

16 | x.link = &b;

 | ^ does not live long enough

17 | }

 | - borrowed value only lives until here

18 | }

 | - borrowed value needs to live until here

In the above example, the borrower x is borrowing a . The borrow scope
ends at the end of the main block. The commented line x.link = &b; tries
to borrow b instead and fails, because b must live at least as long as x !
The following lifetime scheme illustrates the lifetime dependencies.

Structure as a borrower, lifetime scheme

 { a x { b * } }

resource a |___________|

resource b |___|

borrower x |_________| x.link = &a

borrower x |_| x.link = &b

ERROR!

borrow scope x |=========|

b should live at least ¦.....¦

29

Chapter 6. Software development
process and testing
The nature and appropriateness of the software development process im-
pinges on the quality of the resulting software product. For the develop-
ment of Stringsext the test driven development methodology was used. This
chapter describes the reasons for this decision and reports on the experi-
ence.

6.1. Risk management
Based on the functional requirements described in the Chapter 4, Specifi-
cations and especially in the Section 4.3, “Concurrent scanning”, the Sec-
tion 4.4, “Batch processing” and the Section 4.5, “Merge findings” the al-
gorithm of the data-flow was defined (cf. Section 7.3, “Scanner Algorithm”).

Once a todo-list was established, Stringsext’s core functions were identified
and ordered by risk: What would be the impact on the whole project if the
implementation of a certain function turns out to be impossible or difficult
to realise in the Rust?

Specifically, sorted after risk:

1. Section 7.5, “Integration with a decoder library”,

2. Section 7.1, “Concurrency”,

3. Section 7.7, “Polymorphic IO”,

4. Section 7.8, “Merging vectors”,

5. Section 7.6, “Valid string to graphical string filter”.

For every core function alternative technical solutions were suggested, im-
plemented, tested and evaluated (cf. Chapter 7, Analysis and Design). This
approach allowed at an early assurance that Rust provides abstractions and
solutions for each of the core functions. It needs to be emphasized that the
above isolated partial solutions do not reveal any indications about their
intercompatibility or temporal behaviour. This risk is addressed in the next
step.

30

Software development process and testing

6.2. Prototype

Regarding the above core functions the encoder library presented the high-
est risk. Was its low level interface suitable for the intended purpose? Was
it fast enough? In order to answer these questions a first prototype with
very little functionality was built. The first prototype showed as proof of
concept, that the library meets the expectations.

6.3. Test Driven Development

From this point on, the actual development of Stringsext was launched. To
meet the high demands in reliability and correctness it had been developed
using the Test Driven Development (TDD) method suggested by Beck [15].

6.3.1. Writing tests

In conventional software development models, test are written after the
design and implementation phase. In Test Driven Development this order
is inverted: every new feature begins with writing a unit test or modifying
an existing one.

Unit tests are isolation tests. They verify one piece of functionality only and
have no dependencies on other test or on the order the tests are executed.
They should not rely on external components such as data from filesystems,
pipes, networks or databases. These external components have to be simu-
lated by the test-code. The setting-up of the test environment code is often
referred as test fixture. A test case is a set of input data and parameters for
the to-be-tested code or function. Once the to-be-tested code is executed,
the result is compared with the expected result. The expected result must
be included in the test case and their relationship should be as apparent
as possible [15 p. 130].

Rust has an integrated advanced support for unit testing. Here an example
[16]:

Rust’s Unit-Test feature

pub fn add_two(a: i32) -> i32 {

 a + 2

}

31

Software development process and testing

#[test]

fn it_works() {

 assert_eq!(4, add_two(2));

}

The test-code in the Rust’s Unit-Test feature is labelled with the compiler
directive #[test] . This code is compiled only when Rust’s compiler is in-
voked with cargo test .

The test-function it_works() calls the to-be-tested code function add_t-
wo() with the test case 2 . The assertion macro assert_eq!() compares
the expected result 4 with the result of the to-be-tested code and breaks
the test-run in case of failure.

6.3.2. Development cycle

Beck [15 p. 9] defines the development cycle is as follows:

1. Add a little test.

“Write a little test that doesn’t work, and perhaps doesn’t even compile
at first.”

2. Run all tests and fail (Red-state).

3. Make a little change.

“Make the test work quickly, committing whatever sins necessary in
the process.” Do not write code that the test does not check.

4. Run the tests and succeed (Green-state).

5. Refactor to remove duplication (Refactored-state).

6. Commit in your versioning system 1 .

Beck [15 p. 11] gives the following guidelines on how to execute the above
steps:

1. Write a test. Think about how you would like the operation
in your mind to appear in your code. You are writing a sto-

1The commit stage is not part of the original process, but added here for completeness.

32

Software development process and testing

ry. Invent the interface you wish you had. Include all the
elements in the story that you imagine will be necessary to
calculate the right answers.

2. Make it run. Quickly getting that bar to go to green domi-
nates everything else. If a clean, simple solution is obvious,
then type it in. If the clean, simple solution is obvious but it
will take you a minute, then make a note of it and get back
to the main problem, which is getting the bar green in se-
conds. This shift in aesthetics is hard for some experienced
software engineers. They only know how to follow the rules
of good engineering. Quick green excuses all sins. But only
for a moment.

3. Make it right. Now the system is behaving, put the sinful
ways of the recent past behind you. Step back onto the
straight and narrow path of software righteousness. Re-
move the duplication that you have introduced and get to
green [sic: should be refactored] quickly.

The goal is clean code that works […]. First we’ll solve the “that
works” part of the problem. Then we’ll solve the “clean code”
part. This is the opposite of architecture-driven development,
where you solve “clean code” first, then scramble around trying
to integrate into the design the things you learn as you solve
the “that works” problem.

— The general Test Driven Development cycle K. Beck

6.3.3. Evaluation and conclusion

It was my first programming experience with Test Driven Development and
it took me some time to develop the discipline to always start coding by
writing a test and always observing the 6 stages of the development cycle.
With the new system launched, it soon became clear what level of efficiency
gains could be achieved. Concerning the Test Driven Development Cycle I
observed the following:

From Red-state to Green state
Making the test fail first and check weather it succeeds after changing
the code, validates the test itself! It proves not only that the new code

33

Software development process and testing

implements the new feature correctly, it also proves that the test is ob-
serving the right functionality.

From Green-state to Refactored state
At the beginning I was very sceptical about the “Make the test work
quickly, committing whatever sins necessary in the process” suggestion.
Wouldn’t it be more economic to write clean code right away? After some
experience I fully agree with the above approach: Very often the solution
is found only after several attempts. Maybe I need a library function that
does not work the way I expected? Maybe I need a language construct
I use for the first time? Finding a solution is creative process, that will
work the best when the programmer sets himself (temporarily) free from
coding conventions. Furthermore, the trial and error process is more
time-economic when refactoring occurs only at the end of the process.
Separating the “solution finding” (go into green) from “making it right
and beautiful” (refactoring) helps to focus on what’s essential.

Critics of this method argue, that the development process is not structured
enough and the project manager has very little control over it. It surely
depends on the project, but in the present setting the balance between for-
ward planning and creative freedom was just right. Moreover, the structur-
ing effect of writing tests in the first place should not be underestimated. In
order to design a test the programmer must necessarily address the func-
tional requirements before writing the production code itself. Writing tests
also supports code documentation: the testing code shows in an isolated
environment how to interface with the to-be-tested code. This is very help-
ful when you need to understand someone else’s code, especially in case
of a more complex low level API. Reading the testing code together with
the to be tested code gives you an idea about the minimum environment a
piece of code requires. This way the testing code supports and completes
the Rustdoc in-code-documentation.

6.4. Documentation

Documentation is an important part of any software project. Rust projects
and APIs are documented by annotating the source code with special com-
ment-tags \\\ and \\! . Annotations are usually placed just before the line
it refers to. Documentation comments are written in Markdown. The Rust
distribution includes a tool, Rustdoc, that generates the documentation.

34

Software development process and testing

Rustdoc's consists of linked html pages, similar to Javadoc. The Stringsext
project makes extensive use of Rust's documentation feature.

The user manual is written in reStructuredText format and compiled to a
man-page with Docutils (cf. Table 8.3, “Manual page - stringsext - version
1.0”).

35

Chapter 7. Analysis and Design
This chapter discusses technical solutions complying with the specifications
defined in the Chapter 4, Specifications and their implementation in Rust.

7.1. Concurrency
The Figure 7.1, “Data processing and threads” shows the data flow in
Stringsext. All scanner instances as well as the merger-printer are designed
as threads. Rust uses OS-level threads and its type and ownership model
guarantees the absence of data races, which are defined as:

• two or more threads in a single process access the same memory location
concurrently, and

• at least one of the accesses is for writing, and

• the threads are not using any exclusive locks to control their accesses
to that memory.

Rust supports by default two models of inter-thread communication:

• shared memory 1 and

• message channels.

To communicate between different concurrent parts of the
codebase, there are two marker traits in the type system:
“Send” and “Sync”. A type that is “Send” can be transferred
between threads. A type that is “Sync” can be shared between
threads.

Thanks to the type and ownership system, Rust allows safe
shared mutable state. In most programming languages, shared
mutable state is the root of all evil. In Rust, the compiler en-
forces some rules that prevent data races from occurring.

The alternative to shared memory are channels. A channel can
be used like a Unix pipe. It has two ends, a sending and a re-

1Rust inherits C11’s memory model for atomics

36

Analysis and Design

ceiving end. Types that are “Send” can be sent through the pipe
[17].

stringsext imports the crate “scoped_threadpool” used to distribute the
shared-memory input_slice to its scanner-threads. Once a scanner has
accomplished its mission, it sends its result through a dedicated message
channel to the merger-printer-thread. The following code extract illustrates
the implementation:

Inter-thread data exchange

pool.scoped(|scope| {

 for mission in missions.iter_mut() {

 let tx = tx.clone();

 scope.execute(move || {

 let m = Scanner::scan_window (

 &mut mission.offset,

 mission.encoding,

 mission.filter_control_chars,

 byte_counter,

 input_slice);

 mission.offset = if mission.offset >= WIN_STEP {

 mission.offset - WIN_STEP

 } else {

 0

 };

 match tx.send(m) {

 Ok(_) => {},

 Err(_) => { panic!("Can not send FindingCollection:"); },

 };

 });

 }

});

Pool with sleeping threads ready to receive a mission.
Every thread has a context mission with its own variables it can read
and write.
Every thread gets a dedicated result-sending-channel.
In a scoped_treadpool every thread has read access its parent’s
stack.

37

Analysis and Design

Note that Scanner::scan_window() is stateless!
Its output is: m , the result as FindingCollection and mission.off-
set which is pointing to the byte where the scanner has stopped.
The parent’s stack access allows threads to read the input_slice con-
currently.
Prepare mission.offset for the next iteration: Update mission.off-
set to indicate the position where the next iteration should resume
the work.
Send the result to the merger-printer.

Figure 7.1. Data processing and threads

7.2. Reproducible output

Concurrent computing gives no guarantee in which order partial-output is
available. With regard to Stringsext this means that the order in which the
different scanners report their results, depend on racing conditions that
are not predictable. In order to illustrate this phenomenon, the Figure 7.2,
“Non reproducible output” shows the merged output of Stringsext. It is not

38

Analysis and Design

surprising that for example at position 47 and c47 the scanners ASCII
and UTF-8 find strings at the same location since the ASCII-encoding is a
subset of the UTF-8 encoding. Whilst at position 47 the output of the UTF-8
scanner is first listed, at position c47 the output of the ASCII-scanner is
printed first! Even though the output of Stringsext is always correct, the
order in which the results are presented changes unpredictably!

Figure 7.2. Non reproducible output

An important requirement for forensic tools is reproducibil-
ity meaning that the same input-data always produces bit-
identical output-data.

The retained solution is to extend the sort by criteria which is used by the
merger thread to order the findings. Now it proceeds as follows: first it sorts
by the offset of the finding and then by the encoder name that has reported
the finding. The Figure 7.3, “Reproducible output” shows the result. Please
note that for all identical positions the ASCII-scanner result is always listed
first.

Figure 7.3. Reproducible output

39

Analysis and Design

7.3. Scanner Algorithm
The input data is processed in batches chunk by chunk. Each chunk is
browsed in parallel by several “scanner” threads. This section describes
the algorithm:

1. A scanner is a thread with an individual search Mission defined by
the encoding it searches for.

2. The input data is divided into consecutive overlapping memory chunks.
A chunk is a couple of 4KB memory pages, WIN_LEN bytes in size.

3. Scanners wait in pause state until they receive a pointer to a memory
chunk with a dedicated search Mission .

4. All scanner-threads search simultaneously in one memory chunk only.
This avoids that the threads drift to far apart.

5. Every scanner thread searches its encoding consecutively byte by byte
from lower to higher memory.

6. When a scanner finds a valid string, it encodes it into a UTF-8 copy,
called hereafter “finding”. Valid strings are composed of control char-
acters and graphical characters.

7. Before storing a finding in Finding object, the above valid string is
split into one or several graphical strings. Hereby all control charac-
ters are omitted. The graphical strings are then concatenated and the
result is stored in a Finding object. A Finding -object also carries the
memory location (offset) of the finding and a pointer describing the
search mission. Goto 5.

8. A scanner stops when it passes the upper border WIN_STEP of the cur-
rent memory chunk.

9. The scanner stores its Finding -objects in a vector referred as Find-
ings . The vector is ascending in memory location.

10. Every scanner sends its Findings to the merger-printer-thread. In or-
der to resume later, it updates a marker in its Mission -object pointing
to the exact byte where it has stopped scanning. Besides this marker,
the scanner is stateless. Finally, the scanner pauses and waits for the
next memory chunk and mission.

11. After all scanners have finished their search in the current chunk, the
merger-printer-thread receives the Findings and collects them in a
vector.

40

Analysis and Design

12. The merger-printer-thread merges all Findings from all threads into
one timeline and prints the formatted result through the output chan-
nel.

13. In order to prepare the next iteration, pointers in the Mission -objects
are set to beginning of the next chunk. Every scanner resumes exactly
where it stopped before.

14. Goto 3.

15. Repeat until the last chunk is reached.

7.4. Memory layout
The above algorithm splits the search field into overlapping memory
chunks called WIN_LEN . Every chunk is also split into 3 fields: WIN_STEP ,
FINISH_STR_BUF and UTF8_LEN_MAX . This section explains how the algo-
rithm operates on these fields.

WIN_LEN is the length of the memory chunk in which strings are searched
in parallel.

Memory map

|<WIN_STEP1 -------------->|<WIN_STEP2 --------------->|<WIN_STEP3 -----

 |<WIN_OVERLAP1>| |<WIN_OVERLAP2>|

|<WIN_LEN1 ---------------------------- >|

 |<WIN_LEN2 ------------------------------->|

As shown above, WIN_LEN defines an overlapping window that advances
WIN_STEP bytes each iteration.

WIN_LEN = WIN_STEP + WIN_OVERLAP is the size of the memory chunk that
is processed during one iteration. A string is only found when it starts within
the WIN_STEP interval. The remaining bytes can reach into WIN_OVERLAP
or even beyond WIN_LEN . In the latter case the string is split.

Constant definition in source code

 pub const WIN_LEN: usize = WIN_STEP + WIN_OVERLAP;

WIN_OVERLAP is the overlapping fragment of the window. The overlap-
ping fragment is used to read some bytes ahead when the string is not
finished. WIN_OVERLAP is subject to certain conditions: For example the

41

Analysis and Design

overlapping part must be smaller than WIN_STEP . Furthermore, the size of
FINISH_STR_BUF = WIN_OVERLAP - UTF8_LEN_MAX determines the number
of bytes at the beginning of a string that are guaranteed not to be spit.

This size matters because the scanner counts the length of its findings. If
a string is too short (< ARG.flag_bytes), it will be skipped. To avoid that
a string with the required size gets too short because of splitting, we claim
the following condition:

Constraint

 1 <= FLAG_BYTES_MAX <= FINISH_STR_BUF

In practice we chose for FINISH_STR_BUF a bigger size than the minimum
to avoid splitting of strings as much as possible. Please refer to the test func-
tion test_constants() for more details about constraints on constants.
The test checks all the necessary conditions on constants to guarantee the
correct functioning of the program.

Constant definition in source code

 pub const FINISH_STR_BUF: usize = 0x1800;

The scanner tries to read strings in WIN_LEN as far as it can. The first
invalid byte indicates the end of a string and the scanner holds for a moment
to store its finding. Then it starts searching further until the next string
is found. Once WIN_OVERLAP is entered the search ends and the start
variable is updated so that it now points to restart-at-invalid as shown in
the next figure. This way the next iteration can continue at the same place
the previous had stopped.

The next iteration can identify this situation because the start pointer
points into the previous FINISH_STR_BUF interval.

Memory map

|<WIN_STEP1 -------------------------->|<FINISH_STR_BUF>|<UTF8_LEN_MAX>|

 |<WIN_OVERLAP1>---------------->|

|<WIN_LEN1 --->|

 <==string==><invalid bytes><=====string===><invalid bytes>

 ^

42

Analysis and Design

 |

 `restart-at-invalid`

A special treatment is required when a sting extends slightly beyond
WIN_LEN . In this case the scanner most likely runs into an incomplete mul-
ti-byte character just before the end of WIN_LEN . The cut surface restart-
at-cut is then somewhere in the UTF8_LEN_MAX interval as the following
figure shows.

The remaining part will be printed later during the next iteration. But how
does the following iteration know if a string had been cut by the previous
iteration? In the next interval the scanner first checks if the previous scan
ended in the UTF8_LEN_MAX interval. If yes, we know the string has been cut
and we the remaining bytes at the beginning of the new interval regardless
of their size.

Memory map

<...---- WIN_STEP1 ------------->|<FINISH_STR_BUF>|<UTF8_LEN_MAX>|

 |<WIN_OVERLAP1>---------------->|

<...---- WIN_LEN1 -->|

 <==string==><invalid bytes><====string=============|===========...>

 ^ incomplete

 | valid Multi-

 | byte-Char

 |

 `restart-at-cut`

To satisfy all the above constraints WIN_OVERLAP must satisfy two condi-
tions concurrently:

Constraint

 WIN_OVERLAP <= WIN_STEP

FINISH_STR_BUF + UTF8_LEN_MAX = WIN_OVERLAP

Constant definition in source code

 pub const WIN_OVERLAP: usize = FINISH_STR_BUF + UTF8_LEN_MAX as usize;

As Files are accessed through 4KiB memory pages, we choose WIN_STEP
to be a multiple of 4096 bytes.

43

Analysis and Design

Constant definition in source code

 pub const WIN_STEP: usize = 0x2000; // = 2*4096

The from_stdin() function implements its own reader buffer BUF_LEN
to allow stepping with overlapping windows. The algorithm requires that
BUF_LEN is greater or equal than WIN_LEN (the greater the better the per-
formance).

Constraint

 WIN_LEN <= BUF_LEN

Every time BUF_LEN is full, the last WIN_OVERLAP part must be copied from
the end to the beginning of BUF_LEN . As copying is an expensive operation
we choose:

Constraint

 BUF_LEN = 4 * WIN_STEP + WIN_OVERLAP

The above reduces the copying to every 4th iteration.

Constant definition in source code

pub const BUF_LEN: usize = 4 * WIN_STEP + WIN_OVERLAP;

In Unicode the maximum number of bytes a multi-byte-character can occu-
py in memory is 6 bytes.

Constant definition in source code

 pub const UTF8_LEN_MAX: u8 = 6;

7.5. Integration with a decoder library
To meet the requirements defined in the Section 4.2, “Character encod-
ing support” Stringsext's scanners perform a code conversion of their find-
ings towards UTF-8 (see also Figure 7.1, “Data processing and threads”).
Encoding conversion is a very complex matter: the Unicode specification
alone has 1036 pages [18]! And Unicode is not the only encoding involved
in Stringsext's data processing.

44

Analysis and Design

It will come as no surprise that encoding conversion is related to numerous
vulnerabilities (see the Section 4.10, “Secure coding” for details).

Basically, there are two ways to interface a third party library in Rust:

1. Writing bindings for a C library using the Foreign Function Interface
[16].

2. Using a native Rust library.

In order to address potential security issues discussed in the Section 4.10,
“Secure coding” the second option “native Rust library” had been chosen.
Stringsext uses the so called rust/encoding library developed by Seonghoon
[19].

rust/encoding provides encoder and decoder functionality for the following
encodings specified by the WHATWG encoding standard:

• 7-bit strict ASCII (ascii)

• UTF-8 (utf-8)

• UTF-16 in little endian (utf-16 or utf-16le)

• UTF-16 in big endian (utf-16be)

• Single byte encodings in according to the WHATWG encoding standard:

◦ IBM code page 866

◦ ISO 8859-1 (distinct from Windows code page 1252)

◦ ISO 8859-2, ISO 8859-3, ISO 8859-4, ISO 8859-5, ISO 8859-6, ISO
8859-7, ISO 8859-8, ISO 8859-10, ISO 8859-13, ISO 8859-14, ISO
8859-15, ISO 8859-16

◦ KOI8-R, KOI8-U

◦ MacRoman (macintosh), Macintosh Cyrillic encoding (x-mac-cyrillic)

◦ Windows code pages 874, 1250, 1251, 1252 (instead of ISO 8859-1),
1253, 1254 (instead of ISO 8859-9), 1255, 1256, 1257, 1258

• Multi byte encodings according to the WHATWG Encoding standard:

◦ Windows code page 949 (euc-kr, since the strict EUC-KR is hardly
used)

45

Analysis and Design

◦ EUC-JP and Windows code page 932 (shift_jis, since it’s the most wide-
spread extension to Shift_JIS)

◦ ISO-2022-JP with asymmetric JIS X 0212 support (Note: this is not yet
up to date to the current standard)

◦ GBK

◦ GB 18030

◦ Big5-2003 with HKSCS-2008 extensions

• Encodings that were originally specified by WHATWG encoding stan-
dard:

◦ HZ

7.6. Valid string to graphical string filter
The rust/encoding library was originally not designed to search for
strings in binary data. Nevertheless, the low level API function de-

coder.raw_feed() returns and decodes chunks of valid strings found in
the input stream. Those valid strings are then always re-encoded to UTF-8
and comprise:

• Graphical characters represent a written symbol. When printed, toner
or ink can be seen on the paper.

GNU-strings and Stringsext consider SPACE and TAB as
graphical characters.

• Control characters have no visual or spatial representation. They con-
trol the interpretation or display of text.

As the rust/encoding library returns valid strings and Stringsext prints by
default only graphical strings, and additional filter must be applied:

Control character filter

let len = $fc.v.last().unwrap().s.len();

let mut out = String::with_capacity(len);

{

 let mut chunks = (&$fc).v.last().unwrap().s

 .split_terminator(|c: char|

 c.is_control()

46

Analysis and Design

 && c != ' ' && c !='\t'

)

 .enumerate()

 .filter(|&(n,s)| (s.len() >= minsize) ||

 ((n == 0) && $fc.completes_last_str)

)

 .map(|(_, s)| s);

 if let Some(first_chunk) = chunks.next() {

 if !$fc.v.last().unwrap().s.starts_with(&first_chunk) {

 out.push_str(&CONTROL_REPLACEMENT_STR);

 }

 out.push_str(first_chunk);

 for chunk in chunks {

 out.push_str(&CONTROL_REPLACEMENT_STR);

 out.push_str(chunk);

 }

 }

};

out is the filtered string containing all concatenated graphical strings.
(&$fc).v.last().unwrap().s is the valid input string comprising
control and graphical characters.
Iterator over chunks of graphical strings.
Filter out too short strings,
unless they do not complete a cut off string from the previous scanner
run.
Read the first graphical string.
Had there been control characters before it?
Place a CONTROL_REPLACEMENT_STR character. The actually inserted
character depend on the --control-chars command-line option: For
--control-chars=r the character \u{fffd} is inserted. For --con-
trol-chars=i the character \n (newline) is inserted.
Concatenate all the remaining graphical strings and place a CON-
TROL_REPLACEMENT_STR in between each.

All scanners use the above filter unless the command-line option --con-
trol-chars=p is given. Then the whole valid string is printed with all its
control characters.

The only exception to this occurs for the options -e ascii -c i . This
combination invokes a specially designed ASCII-graphical-strings-only de-

47

Analysis and Design

coder. This approach made it possible to generate a bit identical output
compared to GNU-strings for this setting.

The option --control-chars=r addresses especially the requirement de-
fined in the Section 4.6, “Facilitate post-treatment”. All control characters
are replaced by \u{fffd} keeping the filtered string always in one line.
Together with the formatting option -t the printed lines have the follow-
ing syntax:

<offset>'\t('<encoding name>')\t'<graphical string>'\u{fffd}'<graphical...

7.7. Polymorphic IO
GNU-strings can read its input from a file, or from a pipe. Both requires
different optimisation strategies. The fastest way to read a file sequentially
is through the memory mapping kernel interface. danburkert/memmap-rs
is a Rust library for cross-platform memory-mapped file IO. An interesting
feature of memory mapping is that it can map files much larger than the
available RAM to a virtual address space. This allows to map the whole file
regards to its size and iterate over it with a sliding window. The following
code extract shows this technique. Note that there is only one call of the
Mmap::open() wrapper occurring outside the loop. This reduces the over-
head caused by the wrapper.

Memory mapping the entire file

let mut byte_counter: usize = 0;

let file = try!(Mmap::open(file, Protection::Read));

let bytes = unsafe { file.as_slice() };

let len = bytes.len();

for chunk in bytes.windows(WIN_LEN).step(WIN_STEP) {

 sc.launch_scanner(&byte_counter, &chunk);

 byte_counter += WIN_STEP;

}

Map the whole file contents in virtual address space.
Launch the scanner threads providing a chunk of memory.

An alternative technique consists mapping memory pages sequentially
page by page. The following code shows this approach. Note that the call
of Mmap::open_with_offset() happens inside the loop!

48

Analysis and Design

Memory mapping page by page

let len = try!(file.metadata()).len() as usize;

let mut byte_counter: usize = 0;

while byte_counter + WIN_LEN <= len {

 let mmap = Mmap::open_with_offset(&file, Protection::Read,

 byte_counter,WIN_LEN).unwrap();

 let chunk = unsafe { mmap.as_slice() };

 sc.launch_scanner(&byte_counter, &chunk);

 byte_counter += WIN_STEP;

}

Map a few numbers of memory pages only.
Pass them to the scanner threads.

Tests with big files showed that memory mapping page by page is faster
despite its overhead. One reason is that the other solution does not launch
the scanner right from the start: the operating system reads the whole data
in memory before giving the control back to the calling program. This does
not only consume a lot of memory but also holds back the scanners when
the program starts. This is why the solution Memory mapping page by page
was selected: it reads only very few memory pages into memory and the
scanner can start their work much earlier.

Note that the function as_slice() is tagged “unsafe”. It means that the
file-reading operation is only safe as long as no other process writes that file
simultaneously. I consider this requirement to be met for all use cases of
Stringsext and we do not implement any additional file locking mechanism.

The second operation mode “reading input from a pipe” raised another chal-
lenge: None of the standard input readers is able to read by overlapping
chunks. To solve the problem a circular-buffer was implemented. The fol-
lowing shows an extract of the source code.

Circular input buffer

while !done {

 // Rotate the buffer if there isn't enough space

 if data_start + WIN_LEN > BUF_LEN {

 let (a, b) = buf.split_at_mut(data_start);

 let len = data_end - data_start;

 a[..len].copy_from_slice(&b[..len]);

 data_start = 0;

49

Analysis and Design

 data_end = len;

 }

 // Read from stdin

 while data_end < data_start + WIN_LEN {

 let bytes = try!(stdin.read(&mut buf[data_end..]));

 if bytes == 0 {

 done = true;

 break;

 }

 else {data_end += bytes; }

 }

 // Handle data.

 while data_start + WIN_LEN <= data_end {

 sc.launch_scanner(&byte_counter,

 &buf[data_start..data_start + WIN_LEN]);

 data_start += WIN_STEP;

 byte_counter += WIN_STEP;

 }

}

Make sure that there is always enough space to receive the next input
chunk.
Fill the buffer from stdin .
Empty the buffer by reading WIN_LEN bytes.

7.8. Merging vectors
The merger-printer thread in the Figure 7.1, “Data processing and threads”
receives vectors of Findings from the connected upstream scanners.
Every input vector is sorted by memory offset.

To merge the input vectors two alternative solutions have been developed.

The first solution is based on a contribution of Jake Goulding, aka Shep-
master, who posted the following code realising an iterator able to merge
2 vectors [20].

Merging iterator for two vectors

use std::iter::Peekable;

use std::cmp::Ordering;

struct MergeAscending<L, R>

 where L: Iterator<Item = R::Item>, R: Iterator,

50

Analysis and Design

{

 left: Peekable<L>,

 right: Peekable<R>,

}

impl<L, R> MergeAscending<L, R>

 where L: Iterator<Item = R::Item>, R: Iterator,

{

 fn new(left: L, right: R) -> Self {

 MergeAscending {

 left: left.peekable(),

 right: right.peekable(),

 }

 }

}

impl<L, R> Iterator for MergeAscending<L, R>

 where L: Iterator<Item = R::Item>, R: Iterator, L::Item: Ord,

{

 type Item = L::Item;

 fn next(&mut self) -> Option<L::Item> {

 let which = match (self.left.peek(), self.right.peek()) {

 (Some(l), Some(r)) => Some(l.cmp(r)),

 (Some(_), None) => Some(Ordering::Less),

 (None, Some(_)) => Some(Ordering::Greater),

 (None, None) => None,

 };

 match which {

 Some(Ordering::Less) => self.left.next(),

 Some(Ordering::Equal) => self.left.next(),

 Some(Ordering::Greater) => self.right.next(),

 None => None,

 }

 }

}

The following testing code illustrates how to merge two vectors.

Testing code merging iterator for two vectors

#[test]

fn merge_two_iterators_concrete_types() {

 let left = [1, 3, 5, 7, 9];

 let right = [3, 4, 5, 6];

 let result: Vec<_> =

 MergeAscending::new(left.iter(), right.iter()).collect();

51

Analysis and Design

 let expected = vec![1, 3, 3, 4, 5, 5, 6, 7, 9];

 // result == expected?

 assert!(result.iter().zip(expected).all(|(&a,b)| a-b == 0)

);

}

Jake Goulding’s code, as shown above, can only merge two vectors. The
following macro, realised by the author of this present work, extends the
above code by adding successively iterators. The resulting algorithm to find
the next element is basically a linear search. Its complexity is O(N * k) ,
where N is the total length of iterables and k is the number of iterables.

Merging iterator for multiple vectors

macro_rules! merging_iterator_from {

 ($vv: ident) => {{

 let mut ma: Box<Iterator<Item=_>> =

 Box::new($vv[0].iter().map(|&i|i));

 for v in $vv.iter().skip(1) {

 ma = Box::new(MergeAscending::new(ma, v.iter().map(|&i|i)));

 };

 ma

 }}

}

The following testing code illustrates how to merge 5 vectors.

Testing code merging iterator for multiple vectors

#[test]

fn merge_five_iterators() {

 let vv: Vec<Vec<_>> = vec![

 vec![1, 3, 5, 7, 9],

 vec![3, 4, 6, 7],

 vec![0, 6, 8],

 vec![1, 2, 12],

 vec![10]

];

 let result: Vec<_> = merging_iterator_from!(vv).collect::<Vec<_>>();

 let expected = vec![0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 12];

 // result == expected?

 assert!(result.iter().zip(expected).all(|(&a,b)| a-b == 0)

52

Analysis and Design

);

}

For test purposes, the above 4 code samples can be concatenated in one file.

The benefit of this solution is its simplicity and that it does not require
any external library. Sure, linear search is not the fastest algorithm, but
seeing the little number of vectors we have to merge this is not necessarily
a drawback.

Shortly after I implemented the above solution, the iterator kmerge was
published in the rust/itertools library. It implements the heapsort algo-
rithm. The complexity of the approach is O(N * log(k)) , where N is the
total length of iterables and k is the number of iterables. Its better perfor-
mance, compared to the first solution, is practically negligible in the present
case as number of iterables is relatively small.

The next testing code sample shows how to merge 3 vectors.

Testing code kmerge library

extern crate itertools;

use itertools::free::kmerge;

#[test]

fn merge_three_iterators() {

 let vv = vec![

 vec![0, 2, 4],

 vec![1, 2, 5],

 vec![3, 7]

];

 let result = kmerge(&vv).collect::<Vec<_>>();

 let expected = vec![0, 1, 2, 2, 3, 4, 5, 7];

 // result == expected?

 assert_eq!(result.len(),expected.len());

 assert!(result.iter().zip(expected).all(|(&a,b)| a-b == 0)

);

}

For Stringsext I finally chose the second solution with kmerge . Its slightly
better performance is surely desirable, but most of all it was my intention of

53

Analysis and Design

keeping Stringsext's code base as small as possible that led to the decision
using the external kmerge -function of the rust/itertools library.

54

Chapter 8. Stringsext’s usage and
product evaluation
The initial motivation for developing Stringsext were the various shortcom-
ings of GNU-strings especially when it comes to handle international cha-
racter encodings. Does Stringsext support foreign scripts better? Is it as
fast?

8.1. Test case 2 - international character en-
codings

To evaluate Stringsext's capabilities to handle international scripts with
Unicode we chose the same text file as input we used with GNU-strings in
the Section 3.1, “Test case 1 - International character encodings”:

Figure 8.1. Unicode test-file: orig.txt

The following bash-script automates the test case generation: To provide a
copy of the test file in UTF-8, UTF-16be, UTF-16le, UTF-32be and UTF-32le
encodings the Unix tool iconv is used.

The second part of the script feeds the generated copies one by one into
Stringsext. The options -e ascii -e utf-8 -e utf-16be -e utf-16le

55

Stringsext’s usage and product evaluation

instruct Stringsext to search for the following encodings: ASCII, UTF-8,
UTF-16be, UTF-16le. Please refer to Table 8.3, “Manual page - stringsext -
version 1.0” for details on stingsext's command-line options.

Encoding test script

#!/bin/sh

cp orig.txt encoded-utf8.txt

iconv -f utf8 -t utf16le orig.txt >encoded-utf16le.txt

iconv -f utf8 -t utf32le orig.txt >encoded-utf32le.txt

iconv -f utf8 -t utf16be orig.txt >encoded-utf16be.txt

iconv -f utf8 -t utf32be orig.txt >encoded-utf32be.txt

echo "Test stringsext" > report.txt

find . -name "encoded*" -exec echo -e "\n\nScanning file {}:\n" \; \

 -exec ./stringsext -n 8 -e ascii -e utf-8 -e utf-16be -e utf-16le \

 -c i -t x {} \; >> report.txt

The following figures show stringsext's output, case by case.

8.1.1. UTF-8 encoded input

Stringsext’s UTF-8 encoded input

0000000: efbb bf41 7261 6269 633a 2041 206c 6965 ...Arabic: A lie

0000010: 2068 6173 2073 686f 7274 206c 6567 732e has short legs.

0000020: 2028 4c69 743a 2054 6865 2072 6f70 6520 (Lit: The rope

0000030: 6f66 206c 7969 6e67 2069 7320 7368 6f72 of lying is shor

0000040: 742e 290a d8ad d8a8 d984 20d8 a7d9 84d9 t.).......

0000050: 83d8 b0d8 a820 d982 d8b5 d98a d8b1 200a

0000060: 0a43 6869 6e65 7365 3a20 5465 6163 6865 .Chinese: Teache

0000070: 7273 206f 7065 6e20 7468 6520 646f 6f72 rs open the door

0000080: 2e20 596f 7520 656e 7465 7220 6279 2079 . You enter by y

0000090: 6f75 7273 656c 662e 0ae5 b8ab e582 85e9 ourself.........

00000a0: a098 e980 b2e9 9680 efbc 8ce4 bfae e8a1

00000b0: 8ce5 9ca8 e580 8be4 baba 0a0a 4672 656e Fren

00000c0: 6368 3a20 7061 7374 610a 4c65 7320 70c3 ch: pasta.Les p.

00000d0: a274 6573 0a0a 4772 6565 6b3a 2048 6973 .tes..Greek: His

00000e0: 746f 7279 0ace 99cf 83cf 84ce bfcf 81ce tory............

00000f0: afce b10a 0a47 6572 6d61 6e3a 2047 7265 German: Gre

0000100: 6574 696e 6773 0a56 6965 6c65 2047 72c3 etings.Viele Gr.

0000110: bcc3 9f65 0a0a 5275 7373 6961 6e3a 2043 ...e..Russian: C

0000120: 6f6e 6772 6174 756c 6174 696f 6e73 0ad0 ongratulations..

0000130: 9fd0 bed0 b7d0 b4d1 80d0 b0d0 b2d0 bbd1

56

Stringsext’s usage and product evaluation

0000140: 8fd1 8e0a 0a45 7572 6f20 7369 676e 0ae2 Euro sign..

0000150: 82ac 2028 552b 3230 4143 290a 0a54 7265 .. (U+20AC)..Tre

0000160: 626c 6520 636c 6566 0af0 9d84 9e20 2028 ble clef..... (

0000170: 552b 3144 3131 4529 0a0a 0a U+1D11E)...

Figure 8.2. Stringsext’s output with UTF-8 encoded input

Observations
The UTF-8-scanner recognize all characters correctly starting with offset
0x0 . Even though the input starts with word “Arabic”, the ASCII scanner
identifies the first ASCII character with offset 0x3 ! The reason is the pre-
ceding byte-Sequence ef bb bf which is a Unicode byte-order-mark (BOM,
cf. Table 8.1, “Unicode byte order mark”) indicating the used encoding . For
the UTF-8 scanner the BOM is a valid byte-sequence, for the ASCII scanner
it is not. This is why the ASCII-scanner reports the position of the first valid
byte at position 0x3 .

Table 8.1. Unicode byte order mark

BOM bytes Encoding

EF BB BF UTF-8

FE FF UTF-16, big-endian

57

Stringsext’s usage and product evaluation

BOM bytes Encoding

FF FE UTF-16, little-endian

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

Knowing that the ASCII-encoding is a subset of UTF-8, we are not surprised
that that most ASCII characters are recognized. But there are some excep-
tions to this rule. For example, we can see that the ASCII character “e”
of the word “Grüße” at position 0x113 is not printed! It may initially be
surprising, but we should keep in mind that for the ASCII-scanner the cha-
racters “üß” are invalid byte sequences. When the scanner encounters the
letter “e” at the end of the line, it is discarded because one letter alone does
not meet the minimum string length requirement.

The lines 34-35 and 53-55 are showing the strings found by the UTF-16BE
and UTF-16LE scanners. Surprisingly these scanners found Chinese cha-
racters in our text! Because we designed the test case ourself, we know
that Stringsext's input data is definitely encoded in UTF-8 with very little
Chinese symbols. This means any other encodings found in there are false
positives!

8.1.2. UTF-16 encoded input

UTF-16 exists in two variants: UTF-16BE (big-endian) and UTF16LE (lit-
tle-endian). The following figures show the sample in- and output for each
of these variants.

Stringsext’s UTF-16be encoded input

0000000: feff 0041 0072 0061 0062 0069 0063 003a ...A.r.a.b.i.c.:

0000010: 0020 0041 0020 006c 0069 0065 0020 0068 . .A. .l.i.e. .h

0000020: 0061 0073 0020 0073 0068 006f 0072 0074 .a.s. .s.h.o.r.t

...

00001b0: 0067 0073 000a 0056 0069 0065 006c 0065 .g.s...V.i.e.l.e

00001c0: 0020 0047 0072 00fc 00df 0065 000a 000a . .G.r.....e....

00001d0: 0052 0075 0073 0073 0069 0061 006e 003a .R.u.s.s.i.a.n.:

00001e0: 0020 0043 006f 006e 0067 0072 0061 0074 . .C.o.n.g.r.a.t

00001f0: 0075 006c 0061 0074 0069 006f 006e 0073 .u.l.a.t.i.o.n.s

0000200: 000a 041f 043e 0437 0434 0440 0430 0432 >.7.4.@.0.2

0000210: 043b 044f 044e 000a 000a 0045 0075 0072 .;.O.N.....E.u.r

0000220: 006f 0020 0073 0069 0067 006e 000a 20ac .o. .s.i.g.n.. .

58

Stringsext’s usage and product evaluation

0000230: 0020 0028 0055 002b 0032 0030 0041 0043 . .(.U.+.2.0.A.C

0000240: 0029 000a 000a 0054 0072 0065 0062 006c .).....T.r.e.b.l

0000250: 0065 0020 0063 006c 0065 0066 000a d834 .e. .c.l.e.f...4

0000260: dd1e 0020 0020 0028 0055 002b 0031 0044 (.U.+.1.D

0000270: 0031 0031 0045 0029 000a 000a 000a .1.1.E.)......

Figure 8.3. Stringsext’s output with UTF-16be encoded input

Stringsext’s UTF-16le encoded input

0000000: fffe 4100 7200 6100 6200 6900 6300 3a00 ..A.r.a.b.i.c.:.

0000010: 2000 4100 2000 6c00 6900 6500 2000 6800 .A. .l.i.e. .h.

0000020: 6100 7300 2000 7300 6800 6f00 7200 7400 a.s. .s.h.o.r.t.

...

00001b0: 6700 7300 0a00 5600 6900 6500 6c00 6500 g.s...V.i.e.l.e.

00001c0: 2000 4700 7200 fc00 df00 6500 0a00 0a00 .G.r.....e.....

00001d0: 5200 7500 7300 7300 6900 6100 6e00 3a00 R.u.s.s.i.a.n.:.

00001e0: 2000 4300 6f00 6e00 6700 7200 6100 7400 .C.o.n.g.r.a.t.

00001f0: 7500 6c00 6100 7400 6900 6f00 6e00 7300 u.l.a.t.i.o.n.s.

0000200: 0a00 1f04 3e04 3704 3404 4004 3004 3204 >.7.4.@.0.2.

0000210: 3b04 4f04 4e04 0a00 0a00 4500 7500 7200 ;.O.N.....E.u.r.

0000220: 6f00 2000 7300 6900 6700 6e00 0a00 ac20 o. .s.i.g.n....

0000230: 2000 2800 5500 2b00 3200 3000 4100 4300 .(.U.+.2.0.A.C.

0000240: 2900 0a00 0a00 5400 7200 6500 6200 6c00).....T.r.e.b.l.

0000250: 6500 2000 6300 6c00 6500 6600 0a00 34d8 e. .c.l.e.f...4.

0000260: 1edd 2000 2000 2800 5500 2b00 3100 4400 (.U.+.1.D.

0000270: 3100 3100 4500 2900 0a00 0a00 0a00 1.1.E.).......

59

Stringsext’s usage and product evaluation

Figure 8.4. Stringsext’s output with UTF-16le encoded input

In the Figure 8.4, “Stringsext’s output with UTF-16le encoded input” is in-
teresting to notice, that the UTF-16BE scanner in line 29 restarts at offset
0xca . The above hex-dump of Stringsext's input data explains why: the
preceding bytes df00 6500 at position 0xc6 are one of the rare invalid
code unit combinations in UTF-16BE (cf. Table 8.2, “UTF-16 Bit distribu-
tion”). The same phenomena can be observed in the Figure 8.3, “Strings-
ext’s output with UTF-16be encoded input”.

The Figure 8.3, “Stringsext’s output with UTF-16be encoded input” and
the Figure 8.4, “Stringsext’s output with UTF-16le encoded input” show
that, when the right decoder (big-endian or little-endian) is chosen, all Uni-
code-characters are recognized and printed correctly. This is huge improve-
ment compared to GNU-strings which failed to recognize any non-ASCII
characters in UTF-16 (cf. Section 3.1, “Test case 1 - International character
encodings”).

When the wrong scanner was chosen, we see Chinese and Japanese char-
acters. These false positives are very common when scanning for UTF-16
characters. The reason is not the scanner, but an inherent property of the
UTF-16 encoding: Almost every possible byte combination maps to a valid
UTF-16 character! Only some very few byte sequences are invalid: “Be-
cause surrogate code points are not Unicode scalar values, isolated UTF-16
code units in the range 0xD800..0xDFFF are ill-formed [18 p. 160]”. Nev-
ertheless, even code units in this invalid range can appear as surrogate
pairs as shown in the last line of the following table:

60

Stringsext’s usage and product evaluation

Table 8.2. UTF-16 Bit distribution

Unicode scalar value
(code point)

UTF-16-BE code units

xxxxxxxx xxxxxxxx

(no code points in
110111000 00000000

… 110111111 11111111)

xxxxxxxx xxxxxxxx

(all except
110111000 00000000

… 110111111 11111111)

000uuuuu xxxxxxxx

xxxxxxxx

surrogate pairs:
110110ww wwxxxxxx 110111xx xxxxxxxx

(with wwww = uuuuu - 1)

As we can see from the Table 8.2, “UTF-16 Bit distribution”, almost every
possible byte sequence, interpreted as UTF-16 code unit, relates to a Uni-
code code point. 96% of the UTF-16 code units map directly to Unicode
plane 0 (Basic Multilingual Plane BMP) code points. This explains the big
number of false positives. But why do we see so many Chinese and Japan-
ese characters (CJK)? The reason is simple: there are just so many of them
in plane 0! The range 0x2E80-0x33FF is allocated to the “CJK Miscella-
neous Area”, and the range 0x3400-0x9FFF to the “CJKV Unified Ideo-
graphs Area” [18 p. 85] covering 29055 code units out of 63488 possible
code units. This means the probability of encountering CJKV symboles in a
random byte stream, interpreted as UTF-16, is 44%. In a stream with ASCII
text this probability is even much higher and can get close to 100% because
alphabetical letters in ASCII are encoded as 0x41 - 0x7a . When these bytes
are interpreted as high bytes of UTF-16 code units, the result always points
in the CJKV Unicode range.

In the context of forensic examination, false positives are highly undesir-
able. A practicable solution could be to restrict the output of scanners by
setting up additional filter criteria: for example the user could limit his
search to a certain Unicode code block. This solution is out of the scope of
this work and considered as future potential extension.

As of Stringsext version 1.1 1, the --encoding option in-
terprets specifiers limiting the search scope to a range of
Unicode blocks.

1This present document describes Stringsext 1.0. The new Unicode-range-filter feature re-
leased with Stringsext version 1.1 was published after the writing of this thesis.

61

Stringsext’s usage and product evaluation

For example --encoding utf-16le,8,U+0..U+3ff

searches for strings encoded in UTF-16 Little Endian be-
ing at least 8 bytes long and containing only Unicode code-
points in the range from U+0 to U+3ff . Please consult the
man-page for details.

8.2. User documentation
The following table shows the man-page user documentation. It is typeset
as reStructuredText and compiled using the Sphinx tool [21].

Table 8.3. Manual page - stringsext - version 1.0

1. stringsext(1)
Jens Getreu :manmanual: STRINGSUTF :mansource: STRINGSUT-
F :man-linkstyle: blue R <>

NAME

stringsext - search for valid strings, decode and print its graphic charac-
ters as UTF-8.

stringsext is a Unicode enhancement of the GNU strings tool with ad-
ditional functionalities: stringsext recognizes Cyrillic, CJKV charac-
ters and other scripts in all supported multi-byte-encodings, while GNU
strings fails in finding any of these scripts in UTF-16 and many other en-
codings.

SYNOPSIS

stringsext [options] [-e ENC...] [--] [FILE]

stringsext [options] [-e ENC...] [--] [-]

DESCRIPTION

stringsext prints all graphic character sequences in FILE or stdin that
are at least MIN bytes long.

Unlike GNU strings stringsext can be configured to search for valid
characters not only in ASCII but also in many other input encodings,

62

Stringsext’s usage and product evaluation

e.g.: utf-8, utf-16be, utf-16le, big5-2003, euc-jp, koi8-r and many oth-
ers. --list-encodings shows a list of valid encoding names based on the
WHATWG Encoding Standard. When more than one encoding is speci-
fied, the scan is performed in different threads simultaneously.

stringsext reads its input data from FILE. With no FILE, or when FILE
is - , it reads standard input stdin.

stringsext is mainly useful for determining the Unicode content of non-
text files.

When invoked with stringsext -e ascii -c i stringsext can be
used as GNU strings replacement.

OPTIONS

-c MODE, --control-chars=MODE
Determine if and how control characters are printed.

The search algorithm first scans for valid character sequences which
are then are re-encoded into UTF-8 strings containing graphical
(printable) and control (non-printable) characters.

When MODE is set to p all valid (control and graphic) characters are
printed. Warning: Control characters may contain a harmful payload.
An attacker may exploit a vulnerability of your terminal or post pro-
cessing software. Use with caution.

MODE r will never print any control character but instead indicate
their position: Control characters in valid strings are first grouped
and then replaced with the Unicode replacement character '�' (U
+FFFD). This mode is most useful together with --radix because it
keeps the whole valid character sequence in one line allowing post-
processing the output with line oriented tools like grep . To ease
post-processing, the output in MODE r is formatted slightly different
from other modes: instead of indenting the byte-counter, the encod-
ing name and the found string with spaces as separator, only one tab
is inserted.

When MODE is i all control characters are silently ignored. They are
first grouped and then replaced with a newline character.

63

Stringsext’s usage and product evaluation

See the output of --help for the default value of MODE.

-e ENC, --encoding=ENC
Set (multiple) input search encodings. Encoding names ENC are
identified according to the WATHWG standard. --list-encodings
prints a list of implemented encodings.

See the output of --help for the default value of ENC.

-h, --help
Print a synopsis of available options and default values.

-l, --list-encodings
List available encodings as WHATWG Encoding Standard names and
exit.

-n MIN, --bytes=MIN
Print only strings at least min bytes long. The length is measured as
UTF-8 byte-string. --help shows the default value.

-p FILE, --output=FILE
Print to FILE instead of stdout.

-t RADIX, --radix=RADIX
Print the offset within the file before each valid string. The single
character argument specifies the radix of the offset: o for octal, x for
hexadecimal, or d for decimal. When a valid string is split into sever-
al graphic character sequences the cut-off point is labelled according
to --control-chars but no additional offset is printed for each graph-
ic character sequence.

The exception to the above is --encoding=ascii --control-chars=i
for which the offset is always printed before each graphic character
sequence.

When the output of stringsext is piped to another filter you may con-
sider --control-chars=r to keep multi-line strings in one line.

-V, --version
Print version info and exit.

64

Stringsext’s usage and product evaluation

EXIT STATUS

0
Success.

other values
Failure.

EXAMPLES

List available encodings:

stringsext -l

Search for UTF-8 strings and strings in UTF-16 Big Endian encoding:

stringsext -e utf-8 -e utf-16be somefile.bin

Or:

cat somefile.bin {vbar} stringsext -e utf-8 -e utf-16be -

The following settings are designed to produce bit-identical output with
GNU strings:

stringsext -e ascii -c i # equals `strings`

stringsext -e ascii -c i -t d # equals `strings -t d`

stringsext -e ascii -c i -t x # equals `strings -t x`

stringsext -e ascii -c i -t o # equals `strings -t o`

When used with pipes -c r is required:

stringsext -e ascii -e iso-8859-7 -c r somefile.bin {vbar} grep "Ιστορία"

LIMITATIONS

It is guaranteed that all valid string sequences are detected and printed
whatever their size is. However due to potential false positives when in-

65

Stringsext’s usage and product evaluation

terpreting binary data as multi-byte-strings, it may happen that the first
characters of a valid string may not be recognised immediately. In prac-
tice, this effect occurs very rarely and the scanner synchronises with the
correct character boundaries quickly.

When the size of a valid string exceeds FLAG_BYTES_MAX bytes it may
be split into two or more strings and then printed separately. Note that
this limitation refers to the valid string size and not to the graphic string
size which may be shorter. If a valid string is longer than WIN_LEN
bytes then it is always split. To know the values of the constants please
refer to the definition in the source code of your stringsext build. Orig-
inal values are: FLAG_BYTES_MAX = 6144 bytes, WIN_LEN = 14342
bytes.

RESOURCES

Project website: https://github.com/getreu/stringsext

COPYING

Copyright (C) 2016 Jens Getreu

Licensed under the Apache License, Version 2.0 (the "License"); you
may not use this file except in compliance with the License. You may ob-
tain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex-
press or implied. See the License for the specific language governing
permissions and limitations under the License.

8.3. Benchmarking and field experiment
Rust’s build in benchmarking feature allows to clock the time of unit testing
code. At the time of this writing this feature is only available with the “night-
ly” distribution of the Rust compiler. It is especially valuable when used to-
gether with the test driven development method (cf. Section 6.3, “Test Dri-

66

Stringsext’s usage and product evaluation

ven Development”): First the programmer implements the unit testing code
for a new feature. The second step consists in finding alternative solutions
to implement this new feature. Using Rust’s benchmarking the programmer
can take performance consideration into account at very early state when
he is still exploring alternative solutions for the to be tested unit.

A second approach to benchmark software is to monitor the system re-
source usage of the running binary. The Linux-tool time runs programs
and summarize system resource usage. This way we can compare the per-
formance of GNU-strings and Stringsext. For this purpose the following
script runs a series of 6 benchmark tests. In benchmark test 2 Stringsext is
launched with only one ASCII scanner producing the same output as GNU-
strings in benchmark test 1.

The “Field experiment 1” compares the output of GNU-
strings with the output of Stringsext in ASCII-only mode on
real-life data. Both are expected to be identical.

The benchmark tests 3 to 5 are designed to study how Stringsext scale with
more than one ASCII-scanner. The last benchmark 6 is a more realistic test
case with 4 different scanners: ASCII, UTF-8, UTF-16BE and UTF-16LE.

All test operate on the same input data: a partition image with a Linux
kernel dev-sda.raw .

Benchmark script

#!/bin/sh

FILE=dev-sda.raw

BMARK="$1-benchmark.txt"

echo "$(./stringsext -V)" >>"$BMARK"

echo "Inputfile: $(ls -l $FILE)" >>"$BMARK"

echo "\n\nBenchmark 1" >>"$BMARK"

time -vao "$BMARK" strings -n 10 -t x $FILE \

 > "$1-input_$FILE-output_orig.txt"

echo "\n\nBenchmark 2" >>"$BMARK"

time -vao "$BMARK" ./stringsext -c i -n 10 -e ascii -t x $FILE \

 > "$1-input_$FILE-output_1scanner.txt"

echo "\n\nField experiment 1" >>"$BMARK"

cmp --silent "$1-input_$FILE-output_orig.txt" \

67

Stringsext’s usage and product evaluation

 "$1-input_$FILE-output_1scanner.txt"

if [$? -eq 0] ; then

 echo " Success: Output of benchmark 1 and 2 is identical." \

 >> "$BMARK"

else

 echo " FAILED! strings' and stringsext's output is different!" \

 |tee -a "$BMARK" && exit 1

fi

echo "\n\nBenchmark 3" >>"$BMARK"

time -vao "$BMARK" ./stringsext -n 10 -e ascii -e ascii -t x $FILE \

 > "$1-input_$FILE-output_2ascii.txt"

echo "\n\nBenchmark 4" >>"$BMARK"

time -vao "$BMARK" ./stringsext -n 10 -e ascii -e ascii -e ascii -t x \

 $FILE > "$1-input_$FILE-output_3ascii.txt"

echo "\n\nBenchmark 5" >>"$BMARK"

time -vao "$BMARK" ./stringsext -n 10 -e ascii -e ascii -e ascii \

 -e ascii -t x $FILE > "$1-input_$FILE-output_4ascii.txt"

echo "\n\nBenchmark 6" >>"$BMARK"

time -vao "$BMARK" ./stringsext -n 10 -e ascii -e utf-8 -e utf-16be \

 -e utf-16le -t x $FILE > "$1-input_$FILE-output_4scanners.txt"

echo "\n\n\n" >>"$BMARK"

The script is executed on a laptop with an Intel Core i5-2540M, 2.60GHz
CPU.

Benchmark results

Version 0.9.4, (c) Jens Getreu, 2016

Inputfile:-rw-rw---- 1 jens myworkers 536870912 Aug 18 09:12 dev-sda.raw

Benchmark 1

 Command being timed: "strings -n 10 -t x dev-sda.raw"

 User time (seconds): 4.65

 System time (seconds): 0.06

 Percent of CPU this job got: 99%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.72

 Maximum resident set size (kbytes): 2616

 File system outputs: 8552

Benchmark 2

 Command being timed: "./stringsext -c i -n 10 -e ascii -t x dev-sda.raw"

68

Stringsext’s usage and product evaluation

 User time (seconds): 11.26

 System time (seconds): 1.01

 Percent of CPU this job got: 106%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:11.49

 Maximum resident set size (kbytes): 13032

 File system outputs: 8552

Field experiment 1

 Success: Output of benchmark 1 and 2 is identical.

Benchmark 3

 Command being timed: "./stringsext -n 10 -e ascii -e ascii -t x dev-

sda.raw"

 User time (seconds): 31.56

 System time (seconds): 1.52

 Percent of CPU this job got: 195%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:16.91

 Maximum resident set size (kbytes): 19604

 File system outputs: 23176

Benchmark 4

 Command being timed: "./stringsext -n 10 -e ascii -e ascii -e ascii -t x

 dev-sda.raw"

 User time (seconds): 49.86

 System time (seconds): 2.51

 Percent of CPU this job got: 248%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:21.08

 Maximum resident set size (kbytes): 26388

 File system outputs: 34752

Benchmark 5

 Command being timed: "./stringsext -n 10 -e ascii -e ascii -e ascii -e

 ascii -t x dev-sda.raw"

 User time (seconds): 71.66

 System time (seconds): 3.09

 Percent of CPU this job got: 312%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:23.89

 Maximum resident set size (kbytes): 32692

 File system outputs: 46336

Benchmark 6

 Command being timed: "./stringsext -n 10 -e ascii -e utf-8 -e utf-16be -e

 utf-16le -t x dev-sda.raw"

 User time (seconds): 53.00

 System time (seconds): 9.29

 Percent of CPU this job got: 225%

69

Stringsext’s usage and product evaluation

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:27.64

 Maximum resident set size (kbytes): 18896

 File system outputs: 1177360

Table 8.4. Benchmark result synopsis

Bench-
mark

% of CPU Clock Threads % CPU
ideal

Clock ad-
justed

no. this job
got

measured
elapsed
time

scanner
+ merg-
er/printer

required
for optimal
speed

adjusted
for throt-
tling

1 99% 00:04.72 1 100% 00:04.67

2 106% 00:11.49 1+1 106% 00:11.49

3 195% 00:16.91 2+1 212% 00:15.55

4 248% 00:21.08 3+1 336% 00:15.56

5 312% 00:23.89 4+1 448% 00:16.64

6 225% 00:27.64 4+1 448% 00:13.88

Observations

1. When scanning only ASCII, GNU-strings is 2.4 times faster than String-
sext. (Compare “% of CPU” benchmark 1 and 2).

2. The merger/printer thread consumes approximately 6% of the proces-
sor resources of one ASCII scanner thread.

3. In benchmark 4-6 Stringsext is slowed down because of missing hard-
ware resources. (Compare column “% of CPU` this job got” and “%
CPU ideal, required for optimal speed”). The threads are also throttled
down because the processor temperature exceeds 80°C.

4. The column “Clock adjusted” show the adjusted value for throttling
slow down we expect for a system with better hardware resources. The
benchmarks where run on a laptop with an Intel Core i5-2540M CPU at
2.60GHz. Although this processor can run four threads concurrently,
all threads have to share only two cores.

5. In line with expectations, the “maximum resident set size” of Strings-
ext depends on the number of threads launched. Its highest value of
32,7MB was observed in benchmark 5.

70

Stringsext’s usage and product evaluation

6. The “Field experiment 1” succeeds: GNU-strings' output and String-
sext's output in ASCII-only mode are identical.

Conclusion
When launched as pure ASCII scanner Stringsext produces the same out-
put as GNU-strings, but 2.4 times slower. This result is very satisfactory:
Stringsext's ASCII-only mode is only one special usage scenario among
many others requiring complex time costly computing. When scanning for
other encodings or for more than one encoding in parallel Stringsext can
play off its particular strengths. It is best run on modern hardware with
four or more kernels.

8.4. Product evaluation
In the Section 8.3, “Benchmarking and field experiment” we could convince
ourselves that Stringsext produces accurate results timely. But how do mat-
ters stand with the other requirements defined in the Chapter 4, Specifica-
tions? Specifically:

Section 4.1, “User interface”
The user interface of Stringsext should reproduce GNU-strings' user in-
terface as close as possible.
The command-line-options: --bytes , --radix , --help , --version ,
-n , -t and -V have the same meaning and syntax. The syntax of --
encoding takes into account Stringsext’s advanced encoding support.
The option -w is replaced by -c MODE offering a better output control.

Section 4.2, “Character encoding support”
Besides ASCII, Stringsext should support common multi-byte encodings
like UTF-8, UTF-16 big endian, UTF-16 little endian, KOI8-R, KOI8U,
BIG5, EUC-JP and others.
All the listed encodings are covered (see details in the Section 7.5, “Inte-
gration with a decoder library”). The found strings in multiple encodings
are merged and presented in chronological order. The user can specify
more than one encoding at the same time.

Section 4.3, “Concurrent scanning”
Each search encoding specified by the user is assigned to a separate
thread.
This design specification is meet and detailed in the Section 7.1, “Con-
currency”.

71

Stringsext’s usage and product evaluation

Section 4.4, “Batch processing”
All scanners operate simultaneously on the same chunk of the search
field.
To meet this requirement a proprietary input reader with a circular
buffer is implemented (cf. Section 7.7, “Polymorphic IO”).

Section 4.5, “Merge findings”
When all threads' findings are collected, the merging algorithm brings
them in chronological order.
Different alternatives had been explored (cf. Section 7.8, “Merging vec-
tors”). The implemented solution uses the kmerge() -function of the
rust/itertools library.

Section 4.6, “Facilitate post-treatment”
Stringsext should have at least one print mode allowing post-treatment
with line-oriented tools like grep or agrep .
The command-line-options --radix=x --control-chars=r print the
offset of the finding, a tab character, the encoding name, a tab char-
acter and the found string in one line. Control characters in the found
string are replaced with '�' (U+FFFD). This output format facilitates
post-treatment with line-orientated tools and spreadsheet applications.

Section 4.7, “Automated test framework”
Automated unit tests guaranty correct results for the implemented test
cases. Furthermore, the chosen methodology makes sure that the tests
are working as intended.
Stringsext has 17 unit tests. The chosen test driven development method
(cf. Section 6.3.2, “Development cycle”) guarantees that the unit tests
work as intended.

Section 4.8, “Functionality oriented validation”
The same hard-disk image of approximate 500MB is analysed twice: first
with GNU-strings then with Stringsext. If both outputs are identical, the
test is passed.
This test, hereinafter referred to as “Field experiment 1” is executed
with success and discussed in the Section 8.3, “Benchmarking and field
experiment”.

Section 4.9, “Efficiency and speed”
To address this requirement Stringsext is developed in the system pro-
gramming language Rust (cf. Chapter 5, The Rust programming lan-
guage). The satisfactory results are described and discussed in the Sec-
tion 8.3, “Benchmarking and field experiment”.

72

Stringsext’s usage and product evaluation

Section 4.10, “Secure coding”
This matter is addressed e.g. by choosing the new system programming
language Rust offering various compile-time security guarantees (cf.
Chapter 5, The Rust programming language). See also the analysis and
the discussion in the Section 2.2, “Security” and the Section 4.10, “Se-
cure coding”.

Conclusion
Stringsext meets all requirements defined in the Chapter 4, Specifications.
Because of the inherent properties of the UTF-16 encoding, the UTF-16
scanners produce many false positives when run over binary data. A possi-
ble solution is suggested at the end of the Section 8.1.2, “UTF-16 encoded
input”.

8.5. User feedback
Before publishing Stringsext, a beta-version had been tested by a small
group of forensic practitioners. In addition, the participants were invited to
report back about desirable extensions or missing features:

1. String decoding based https://tools.ietf.org/html/rfc4648
(Base64 and others)

2. Base58 decoding

3. It would be nice that the list option -l displayed the sup-
ported encodings in alphabetic order, this would make eas-
ier to find the option we are looking for.

— User feedback: feature requests

Regarding additional encodings: Stringsext is designed to be extensible.
Adding further encodings other than the ones listed in the Section 7.5, “In-
tegration with a decoder library” is beyond the scope of this project, but it
is made easy: As working sample encoding extension ASCII_GRAPHIC can
be found in the source code of Stringsext in src/codec/ascii.rs . The re-
quest “ordered list” was implemented in version 0.9.5.

So far Stringsext’s search algorithm is based solely on finding valid byte
sequences for a given encoding. Stringsext is a pure data processing system
in the sense that there are no semantics weather the resulting graphical

73

https://tools.ietf.org/html/rfc4648

Stringsext’s usage and product evaluation

character sequences make any “sense”. The following suggestion received
by email [22] goes far beyond this limitation.

For future development: it would be nice to have some form
of automatic detection of what encodings are more likely to be
present in a given file, or even go further and do automatic de-
tection of language like in Google translator (maybe you could
upload selected words) [22].

— Professor Miguel Frade Computer Science and Communi-
cation Research Centre - Polytechnic Institute of Leiria

This above idea opens the very interesting research field of Computational
Linguistics. Language detection in character sequences requires a linguis-
tic model of “what is a word” in a given human language. Thus, with the
suggested enhancement Stringsext would become a language processing
system.

Jurafsky [23 p. 3] illustrates the conceptual difference between a data pro-
cessing system and a language processing system as follows: “What distin-
guishes language processing applications from other data processing sys-
tems is their use of knowledge of language. Consider the Unix wc program,
which counts the total number of bytes, words, and lines in a text fi le. When
used to count bytes and lines, wc is an ordinary data processing applica-
tion. However, when it is used to count the words in a file, it requires knowl-
edge about what it means to be a word and thus becomes a language pro-
cessing system.” Applied to Stringsext “the knowledge about what it means
to be a word” comprises a probabilistic model about the likelihood that a
certain character sequence represent a word in a given human language. It
is clear that the approach is beyond the scope of this project. Nevertheless,
the exiting challenge could be tackled in future research projects.

8.6. Licence and distribution
Stringsext is licensed under the Apache Licence, Version 2.0; you may not
use this program except in compliance with the Licence. You may obtain a
copy of the Licence at http://www.apache.org/licenses/LICENSE-2.0 .
The copyright remains with the author Jens Getreu.

Unless required by applicable law or agreed to in writing, software dis-
tributed under the Licence is distributed on an "AS IS" BASIS, WITHOUT

74

http://www.apache.org/licenses/LICENSE-2.0

Stringsext’s usage and product evaluation

WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the Licence for the specific language governing permissions and limi-
tations under the Licence.

The source code including its inline source documentation is hosted on
Github [1]: https://github.com/getreu/stringsext . The project’s main
page has links to the developer documentation and to the compiled binaries
for various architectures.

75

https://github.com/getreu/stringsext

Chapter 9. Development process
evaluation and conclusion
Besides the contribution of the new tool Stringsext to the forensic commu-
nity a more general consideration is of scientific interest: Seeing that Rust
is a very young programming language: how well is the Rust ecosystem
suited for forensic tool development?

Forensic tools have to fulfil stringent requirements concerning their quali-
ty: In general, huge amount of data has to be processed which leads to most
demanding requirements in terms code efficiency (cf. Section 2.3, “Code
efficiency”). Furthermore, the data to be analysed is potentially dangerous:
it may contain malicious payload targeting common vulnerabilities (cf. Sec-
tion 2.2, “Security”). Finally, in order to fulfil legal requirements forensic
tools must be extensively tested.

The present case study confirm my initial hypothesis that Rust address-
es theses requirements (cf. Chapter 5, The Rust programming language):
Rust, as system programming language, is designed for code efficiency.
Rust’s security guaranties comprise memory safety, the cause for a com-
mon category of vulnerabilities. It’s build in unit testing feature supports
software verification as defined in the Section 2.1, “Tool validation”.

Guaranteed memory safety is a core property of Rust’s borrow checker:
When a Rust source code compiles, the resulting binary is guaranteed to be
memory safe. In consequence, such a binary is immune to memory safety re-
lated attacks: e.g. out-of-bounds read, buffer over-read, heap-based buffer
overflow, improper validation of array index, improper release of memory
before removing last, double free, use after free. As Stringsext and all its
used libraries are solely Rust components, Stringsext is memory safe.

In the Section 8.3, “Benchmarking and field experiment” we compared the
code efficiency of GNU-strings implemented in C and Stringsext implement-
ed in Rust. When Stringsext is run in ASCII-only mode, both produce the
same output. The field experiment yielded the expected result, 2.4 times
slower but still on the same scale. However, Stringsext’s design implies
much more complex computations, hence the result is not surprising.

76

Development process evaluation and conclusion

How about the efficiency of Rust’s abstractions and its overall perfor-
mance? A good estimation is to compare benchmarks of small and simple
programs. Too complex programs should be avoided for this purpose be-
cause variations of the programmer’s skills may bias the result. According
to the “Computer Language Benchmark Game” [24] Rust and C/C++ have
similar benchmark results.

Forensic tools have to operate on many architectures. Here enters Rust’s
cross-compiling feature on scene:

As Rust uses the LLVM framework as backend, it is available
for most platforms. rust-lang-nursery/rustup.rs [25] is a
Rust toolchain multiplexer. It installs and manages several tool-
chains in parallel and presents them all through a single set of
tools installed. Thanks to the LLVM backend, it’s always been
possible in principle to cross-compile Rust code: just tell the
backend to use a different target! And indeed, intrepid hackers
have put Rust on embedded systems like the Raspberry Pi 3,
bare metal ARM, MIPS routers running OpenWRT, and many
others.

As described above, Rust’s memory safety guarantee is a huge improvement
in terms of security because a whole category of potential vulnerabilities
can be ruled out from the outset. But memory safety does not mean bug
freeness! Beside the security aspects discussed above, the correctness of
forensic software is crucial (cf. Section 2.1, “Tool validation”). It is clear
that the overall correctness of a program depend also on the correctness of
every library used. Hence, the question arises whether the Rust ecosystem
is mature enough to meet the ambitious requirements of forensic software.
Indeed, compared to C, Rust’s libraries are relatively young. Here again
extensive unit testing revealed to be a helpful diagnostic method: version
0.4.16 of the brand new kmerge function, part of the itertools library
used in Stringsext, reversed under rare conditions the first and second find-
ing. This bug was actually fixed with pull request #135 (2. Aug. 2016) some
days after its appearance. Although the bug-fix was already committed in
Github, the package manager did not know about it, because no new version
of itertools was released yet. On the whole, a little change in the pack-
age reference list Cargo.toml solved the problem immediately. Finally, it
took another week for the corrected itertools version to be released. So
far this was the only time I encountered a bug in any of the used libraries.

77

Development process evaluation and conclusion

One conclusion we can draw from this experience, is that young libraries
are more likely to have bugs than established ones. It cannot be empha-
sised enough that, diligent unit tests help to find most bugs at early state.
Also those present in external libraries. However, unit testing do not help
against memory safety related vulnerabilities, which are typical for C and
C++ programs and which can persist in software for decades. It is incum-
bent on readers to form their own opinion, I largely prefer accepting the
greater likelihood of manageable bugs related to young Rust libraries, than
the uncertainty of hidden memory safety related vulnerabilities typical for
C and C++.

Rust code has the reputation that it is easy to read and understand, but it
is hard to write. I subscribe to this point of view. Rust’s biggest strength is
that unsafe code does not compile, can be also very frustrating. Especially
when you do not understand the compiler’s error messages. At some stage
it even happened, that I run out of ideas how to fix a particular problem.
Fortunately, the Rust Internet community is very supporting and helpful. In
the meantime, also Rust’s error messages improved with version 1.12 and
Rust’s documentation is steadily updated and enhanced.

The benefits of unit testing had been stressed throughout this work. The
chosen software development method for this project was the test driven
development method where unit testing is the key element. Contrary to
other methods unit tests and the to be tested code is always programmed by
the same person. The Section 6.3, “Test Driven Development” describes the
method more in detail and shows why it was good choice under the given
circumstances. However, other methods may be as suitable depending on
the organisational structure of the programmer team.

Conclusion
Looking back, Rust was a very good choice for the present project, even
though batch processing of multi-bytes character streams revealed to be
far more complex than expected. Additionally, concurrent programming in
Rust posed a formidable hurdle at the beginning. Fortunately, it did prove
to be helpful to contact the Rust community for their friendly assistance. In
addition, for a not so experienced Rust programmer it is reassuring to know
that when a complex piece of code finally compiles, it is memory safe. The
same reasoning applies when a programmer has to refactor existing code.
I often had a queasy feeling when I had to work on other people C code.
Do I free the memory at the right moment? Is this pointer still valid? Rust’s

78

Development process evaluation and conclusion

ownership paradigm resolves this uncertainty. When it compiles, then it is
memory safe. Furthermore, Rust is especially suitable for bigger projects
where several programmers contribute to the same code. And this is par-
ticularly true when developing forensic software with its high quality stan-
dards.

It has to be noted though that the Rust ecosystem is still very young and
bugs in new libraries are nothing uncommon. Fortunately, the library main-
tainers are very responsive and a bug is usually fixed within days. Here
again unit testing becomes handy. It does not only find bugs in our own
code at early stage, it also helps to identity bugs in external libraries. Used
together with the test driven development method, the test code and the to
be tested code can be validated in one go.

Stringsext is especially useful where GNU-strings fails: For example recog-
nizing multi-byte characters in UTF-16. In order to realise Stringsext’s full
potential an additional filter, limiting the Unicode output to a chosen set of
scripts, would be desirable.

A major focus of future development will be aiming to reduce the number
of false positives especially when scanning for UTF-16 in binary data. A
practicable solution could be a parametrizable additional filter limiting the
search to a range of Unicode blocks.

As of Stringsext version 1.1 1, the --encoding option in-
terprets specifiers limiting the search scope to a range of
Unicode blocks.
For example --encoding utf-16le,8,U+0..U+3ff

searches for strings encoded in UTF-16 Little Endian be-
ing at least 8 bytes long and containing only Unicode code-
points in the range from U+0 to U+3ff . Please consult the
man-page for details.

1This present document describes Stringsext 1.0. The new Unicode-range-filter feature re-
leased with Stringsext version 1.1 was published after the writing of this thesis.

79

References
1. J. Getreu, “Stringsext, a GNU Strings Alternative with Multi-Byte-En-

coding Support.” Tallinn, Jan-2016.

2. D. Meuwly, “Case Assessment and Interpretation in Digital Forensic
Casework. Cyber Security Summer School 2016: Digital Forensics,
Technology and Law.” Tallinn, May-2016.

3. Y. Guo, J. Slay, and J. Beckett, “Validation and Verification of Computer
Forensic Software tools—Searching Function,” Digital Investigation,
vol. 6, pp. S12–S22, Sep. 2009.

4. V. S. Harichandran, D. Walnycky, I. Baggili, and F. Breitinger, “CuFA:
A More Formal Definition for Digital Forensic Artifacts,” Digital Inves-
tigation, vol. 18, pp. S125–S137, 2016.

5. J. Beckett and J. Slay, “Digital Forensics: Validation and Verification in
a Dynamic Work Environment,” 2007, pp. 266a–266a.

6. P. Craiger, J. Swauger, C. Marberry, and C. Hendricks, “Validation of
Digital Forensics Tools,” Digital crime and forensic science in cyber-
space. Hershey, PA: Idea Group Inc, pp. 91–105, 2006.

7. S. Berinato, “The Rise of Anti Forensics.,” CSO On-
line. http://www.csoonline.com/article/2122329/investigations-foren-
sics/the-rise-of-anti-forensics.html , Aug-2007.

8. T. Eggendorfer, “IT Forensics. Why Post-Mortem Is Dead. Cyber Se-
curity Summer School 2016: Digital Forensics, Technology and Law.”
Tallinn University of Technology, Jul-2016.

9. “Log Message: Sourceware Import,” Mail archive of the binutils-cvs
@sourceware.cygnus.com mailing list for the binutils project. https://
sourceware.org/ml/binutils-cvs/1999-q2/msg00000.html , Mar-1999.

10. M. Zalewski, “PSA: Don’t Run ’strings’ on Untrusted Files
(CVE-2014-8485),” lcamtuf’s blog. Oct-2014.

11. US-CERT/NIST, “Vulnerability Summery for CVE-2016-3861,” Na-
tional Vulnerability Database. https://web.nvd.nist.gov/view/vuln/de-
tail?vulnId=CVE-2016-3861 , Nov-2016.

12. M. I. T. R. E. Corporation, “CWE - Common Weakness Enumeration,
a Community-Developed Dictionary of Software Weakness Types.”
https://cwe.mitre.org/ , 2016.

80

http://www.csoonline.com/article/2122329/investigations-forensics/the-rise-of-anti-forensics.html
http://www.csoonline.com/article/2122329/investigations-forensics/the-rise-of-anti-forensics.html
https://sourceware.org/ml/binutils-cvs/1999-q2/msg00000.html
https://sourceware.org/ml/binutils-cvs/1999-q2/msg00000.html
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-3861
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-3861
https://cwe.mitre.org/

References

13. The-Rust-Project-Developers, The Rustonomicon. 2016.

14. A. Liao, “Rust Borrow and Lifetimes.” http://
arthurtw.github.io/2014/11/30/rust-borrow-lifetimes.html , Nov-2014.

15. K. Beck, Test-Driven Development: By Example. Addison-Wesley Pro-
fessional, 2003.

16. The-Rust-Project-Developers, The Rust Programming Language. 2016.

17. D. Bargen, “How Does Rust Handle Concurrency? - Quora.” Dec-2016.

18. The Unicode Standard, Version 9.0.0 Core Specification, vol. 9. Moun-
tain View,: Unicode Consortium, 2016.

19. K. Seonghoon, “Character Encoding Support for Rust: Rust-Encoding.”
Aug-2016.

20. J. Goulding, “Rust Implementing Merge-Sorted Iterator,” Stack Over-
flow. http://stackoverflow.com/questions/23039130/rust-implement-
ing-merge-sorted-iterator , Aug-2015.

21. R. Lehmann, “The Sphinx Project,” Universität Potsdam, Project Doc-
umentation, 2011.

22. M. Frade, “E-Mail: GNU Strings Reimplementation.” Nov-2016.

23. D. Jurafsky and J. H. Martin, Speech and Language Processing. Pear-
son, 2014.

24. B. Fulgham and I. Gouy, “C G vs Rust (64-Bit Ubuntu Quad Core) | Com-
puter Language Benchmarks Game.” http://benchmarksgame.alio-
th.debian.org/u64q/compare.php?lang=gpp&lang2=rust , Oct-2016.

25. B. Anderson, “Taking Rust Everywhere with Rustup - The Rust Pro-
gramming Language Blog,” The Rust Programming Language Blog.
https://blog.rust-lang.org/2016/05/13/rustup.html , May-2016.

81

http://arthurtw.github.io/2014/11/30/rust-borrow-lifetimes.html
http://arthurtw.github.io/2014/11/30/rust-borrow-lifetimes.html
http://stackoverflow.com/questions/23039130/rust-implementing-merge-sorted-iterator
http://stackoverflow.com/questions/23039130/rust-implementing-merge-sorted-iterator
http://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=gpp&lang2=rust
http://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=gpp&lang2=rust
https://blog.rust-lang.org/2016/05/13/rustup.html

	Forensic-Tool Development with Rust
	Table of Contents
	Preface
	Chapter 1. Introduction
	Chapter 2. Tool Requirements in Digital Forensics
	2.1. Tool validation
	2.2. Security
	2.3. Code efficiency

	Chapter 3. GNU-strings in forensic examination
	3.1. Test case 1 - International character encodings
	3.2. Typical usage
	3.3. Requirements derived from typical usage

	Chapter 4. Specifications
	4.1. User interface
	4.2. Character encoding support
	4.3. Concurrent scanning
	4.4. Batch processing
	4.5. Merge findings
	4.6. Facilitate post-treatment
	4.7. Automated test framework
	4.8. Functionality oriented validation
	4.9. Efficiency and speed
	4.10. Secure coding

	Chapter 5. The Rust programming language
	5.1. Memory safety
	5.2. Iterators
	5.3. Zero-Cost Abstractions
	5.4. Recommendations for novice Rust programmers
	5.4.1. Borrow scope extension
	5.4.2. Structure as a borrower

	Chapter 6. Software development process and testing
	6.1. Risk management
	6.2. Prototype
	6.3. Test Driven Development
	6.3.1. Writing tests
	6.3.2. Development cycle
	6.3.3. Evaluation and conclusion

	6.4. Documentation

	Chapter 7. Analysis and Design
	7.1. Concurrency
	7.2. Reproducible output
	7.3. Scanner Algorithm
	7.4. Memory layout
	7.5. Integration with a decoder library
	7.6. Valid string to graphical string filter
	7.7. Polymorphic IO
	7.8. Merging vectors

	Chapter 8. Stringsext’s usage and product evaluation
	8.1. Test case 2 - international character encodings
	8.1.1. UTF-8 encoded input
	8.1.2. UTF-16 encoded input

	8.2. User documentation
	1. stringsext(1)

	8.3. Benchmarking and field experiment
	8.4. Product evaluation
	8.5. User feedback
	8.6. Licence and distribution

	Chapter 9. Development process evaluation and conclusion
	References

